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Chapter 1

Introduction

The study of pattern avoiding permutations can be directly related to D.

Knuth who introduced it in the 1960’s, posing a stack sorting problem [Kn].

In the successive period pattern avoiding permutations have always been

sparking several authors’ interest, but only in the 1980’-90’s this matter has

come to the fore, catching many attentions.

The Stanley-Wilf conjecture (for any pattern q, there exists a constant

cq so that for all positive integers, we have Sn(q) ≤ cn
q ) dates back ap-

proximately twenty years ago. A lot of papers are about this long-standing

conjecture: R. Arratia’s study on an equivalent reformulation of it (the limit

limn→∞ n
√

Sn(q) does exist [Ar]); its proofs for layered patterns [B1] and for

patterns of length four [B]; Klazar’s paper on its link with the Füredi-Hajnal

conjecture [FH] involving 0− 1 matrices [Kl]; its solution due to A. Marcus

and G. Tardos [MT] (for more details on the Stanley-Wilf conjecture we

refer to [B2]).

At the beginning of the 1990’s, the studies of J. West [W1, W3] on

permutations sortable by two passages through a stack appeared, directly

connected to the stack-sorting operation posed by D. Knuth [Kn]. These

permutations were characterized in terms of pattern avoiding permutations

(more precisely they belong to Sn(2341, 35241)) and their cardinality is
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2(3n)!/(n + 1)!(2n + 1)!. This result, first conjectured by J. West himself,

was then proved by D. Zeilberger [Z] with analytic techniques; and even that

has induced a series of interesting works, since 2(3n)!/(n + 1)!(2n + 1)! is

also the cardinality of a certain family of planar maps (rooted nonseparable

maps). Starting from this correspondence S. Dulucq, S. Gire and J. West

[DGW] found a class of pattern avoiding permutations (Sn(2413, 41352))

also enumerated by 2(3n)!/(n + 1)!(2n + 1)!. This class, by means of bi-

jective passages, was together mapped to Sn(2341, 35241) by S. Dulucq, S.

Gire and O. Guibert [DGG], providing a combinatorial proof of J. West’s

conjecture and an enumeration of two-stack sortable permutations according

to various parameters.

We can not forget to mention the paper authored by R. Simion and F.

W. Schmidt [SS] which represent the first methodical work on the matter:

here, the enumeration of permutations avoiding any subset of patterns of

length three is solved; even though it has been preceded by similar works,

it is the first where such a problem is tackled in an exhaustive way.

The above examples are only an arbitrary choice among all the possible

ones to show how the matter of pattern avoidance is an interesting and rele-

vant discipline in Mathematics. The list of subjects where pattern avoiding

permutations are involved in could be very long. Here, only a few of them

are cited: sorting problems [BoM, Kn, Rot, W1, W3], analysis of regular-

ities in words [Be, L], particular instances of pattern matching algorithms

optimizations [BBL]... Nevertheless, we recall that pattern avoiding per-

mutations are proved to be useful also in other disciplines not belonging to

Computer Science. For instance, they arise in the study of the singulari-

ties of Schubert varieties [LS], Chebyshev polynomials of the second kind

[Kra, MV1], rook polynomials for a rectangular board [MV]. Moreover, the

2143-avoiding permutations, called vexillary permutations, are used in the

theory of Schubert polynomials. Many other papers dealing with pattern
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avoidance have been published and it would not be possible to cite all of

them.

Beside the enumeration of permutations avoiding one or more patterns,

many variations on this main theme have been introduced and studied by

several authors. We recall the enumeration of permutations containing a cer-

tain pattern [MV2, No, NZ], counting the occurrences of a certain pattern

in permutations, counting the permutations avoiding patterns with different

lengths [M1] and, last but not least, studying permutations avoiding pat-

terns with increasing length. The paper of A. Regev [R] can also be referred

to the latter, where the author gives an asymptotic value of the number

of permutations avoiding the subsequences 12 . . . k. By the way, using the

results of this work, it is possible to prove the Stanley-Wilf conjecture for

the permutations of Sn(12 . . . k). T. Mansour, too, in the great amount of

his coauthored works, was concerned with patterns of increasing length: in

[M2], for instance, he provides a simple expression for the number of per-

mutation avoiding the sequences of length k having the first entry equal

to a certain value (but this is only one among his many results!). Close

to this line of research is the paper [BDPP3] where the authors count the

permutations avoiding an increasing number of length-increasing patterns.

The same authors in [BDPP2] characterized the permutations avoiding the

pattern 321 and a certain increasing length pattern: their enumeration pro-

vided a kind of “discrete continuity” between Motzkin and Catalan numbers.

Chapter 3 of the present thesis presents similar results, providing a conti-

nuity between Fibonacci and Catalan numbers basing on pattern avoiding

permutations, where the forbidden patterns are suitably generalized consid-

ering them more and more longer, till they are no more relevant with respect

to their occurrence in the permutation.

Only recently, Babson and Steingŕımsson introduced a particular class
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of forbidden patterns, namely the generalized permutation patterns [BS]. A

generalized pattern τ is a permutation equipped with some dashes between

some pairs of its element (e.g., 1−32 and 2−43−1 are generalized patterns

of length 3 and 4, respectively) and a permutation contains τ when adjacent

elements in τ correspond to adjacent elements in the permutation. The au-

thors introduced these kind of patterns for the study of Mahonian statistics

in permutations. They proved that almost all known Mahonian permuta-

tion statistics can be written as linear combination of generalized patterns of

length at most 3. Successively, several classes of generalized pattern avoid-

ing permutations have been widely studied in recent years. We only cite

[K], where the author presents a wide set of interesting questions about the

matter, including some aspects of the enumeration of permutations avoiding

certain sets of generalized patterns with some restrictions.

The enumerations of permutations avoiding one, two or three Babson-

Steingŕımsson patterns were already tackled and solved in [C], [CM] and

[BFP], respectively. Chapter 2 is devoted to the enumeration of the permu-

tations avoiding more than three Babson-Steingŕımsson patterns (general-

ized patterns of length three), this is the reason why it can be seen as the

continuation of the work started in [BFP] for the fulfillment of the proofs of

the conjectures presented in [CM]. Moreover, in the same chapter we enu-

merate the permutations avoiding one generalized pattern of length three

according to the length of the permutations and its last or first entry.

The matter of generalized pattern avoiding permutations has received

a further attention in the paper [El] where the author, motivated by the

recent proof of the Stanley-Wilf conjecture, investigates about the behavior

of the number of permutations avoiding a generalized pattern.

An additional aspect which can be introduced in the analysis of pattern

avoiding permutations relates to their order properties. In Chapter 4 some

classes of pattern avoiding permutations are studied under this point of view.
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Thanks to some bijections with other combinatorial objects (Dyck paths,

Motzkin paths and Schröder paths) it is possible to transfer to some class

of permutations a natural order defined on them [FP2]. This order is such

that the mentioned paths are endowed with a distributive lattice structure.

We achieve that, in same case, the induced partial order on the obtained

subsets of restricted permutations coincides with the strong Bruhat order

of the symmetric group Sn, so that they can be regarded as distributive

sublattices of Sn (which is not a lattice if considered as a whole). It can

be noted that similar results have been found by other authors [BW, Dr],

nevertheless they were concerned with the weak order on permutations.

The last chapter of the thesis deals with some considerations about the

exhaustive generation of combinatorial objects. More precisely, we outline

a procedure to generate all the objects of a class such that a Gray code is

obtained. This possibility is connected with a particular property of the

succession rule encoding the construction of the objects, which is not too

much unusual among the different kinds of succession rules. Moreover, an

efficient generation algorithm for Dyck paths of the same length is proposed.

The main idea which it is based on can be easily extended to Grand Dyck and

Motzkin paths, nevertheless we think that some suitable consideration of the

same kind can be find also for some class of pattern avoiding permutations.

1.1 Background

Pattern and generalized pattern avoiding permutations

A (classical) pattern is a permutation σ ∈ Sk and a permutation π ∈ Sn

avoids σ if there is no any subsequence πi1πi2 . . . πik with 1 ≤ i1 < i2 <

. . . < ik ≤ n which is order-isomorphic to σ. In other word, π must contain

no subsequences having the entries in the same relative order of the entries

of σ. Generalized patterns were introduced by Babson and Steingŕımsson
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for the study of the mahonian statistics on permutations [BS]. They are

constructed by inserting one or more dashes among the elements of a classical

pattern (two or more consecutive dashes are not allowed). For instance,

216− 4− 53 is a generalized pattern of length 6. The type (t1, t2, . . . , th+1)

of a generalized pattern containing h dashes records the number of elements

between two dashes (we suppose a dash at the beginning and at the end

of the generalized pattern, but we omit it): the type of 216 − 4 − 53 is

(3, 1, 2). A permutation π contains a generalized pattern τ if π contains τ

in the classical sense and if any pair of elements of π corresponding to two

adjacent elements of τ (not separated by a dash) are adjacent in π, too. For

instance, π = 153426 contains 32− 14 in the entries π2π3π5π6 = 5326 or the

pattern 3− 214 in the entries π2π4π5π6 = 5426. A permutation π avoids a

generalized pattern τ if it does not contain τ . If P is a set of generalized

patterns, we denote Sn(P ) the permutations of length n of S (symmetric

group) avoiding the patterns of P .

Here, we are interested to the generalized patterns of length three, which

are of type (1, 2) or (2, 1) and are those ones specified in the set

M = {1− 23, 12− 3, 1− 32, 13− 2, 3− 12, 31− 2, 2− 13, 21− 3,

2− 31, 23− 1, 3− 21, 32− 1}.

In the sequel, sometimes we can refer to a generalized pattern of length three

more concisely with pattern.

If π ∈ Sn, we define its reverse and its complement to be the permuta-

tions πr and πc, respectively, such that πr
i = πn+1−i and πc

i = n + 1 − πi.

We generalize this definition to a generalized pattern τ obtaining its re-

verse τ r by reading τ from right to left (regarding the dashes as particular

entries) and its complement τ c by considering the complement of τ regard-

less of the dashes which are left unchanged (e.g. if τ = 216 − 4 − 53,

then τ r = 35 − 4 − 612 and τ c = 561 − 3 − 24). It is easy to check
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τ rc = τ cr. If P ⊆M, the set {P, P r, P c, P rc} is called the symmetry class of

P (P r, P c and P rc contain the reverses, the complements and the reverse-

complements of the patterns specified in P , respectively). We have that

|Sn(P )|=|Sn(P r)|=|Sn(P c)|=|Sn(P rc)| (see [SS]), therefore we can choose

one of the four possible sets as the representative of a symmetry class, as

far as the enumeration of S(R), R ∈ {P, P r, P c, P rc}, is concerned.

Eco method and succession rules

Often, we are going to refer to the ECO method, basing our arguments on

the ECO construction of some combinatorial objects. This method allows

to construct all the objects of a given class. If p is a parameter according to

which we enumerate the objects, the ECO method is based on the possibility

to define an operator generating all the objects of size n+1 (i.e., the objects

whose parameter has value n + 1) exactly ones starting from the objects of

size n. So we have a recursive description of the objects we can often encode

with a succession rule (see below), from which, in many cases, it is possible

to derive the generating function of the class. Here, we present only the

main theorem the ECO method relies on, for more details see [BDPP1].

Theorem 1.1.1 Let S be a class of combinatorial objects; let p be a param-

eter of S (p : S → N+) and Sn = {x ∈ S : p(x) = n}; let ϑ be an operator

on S (ϑ : Sn → 2Sn+1 , where 2Sn+1 is the power set of Sn+1). If ϑ satisfies

the following conditions:

1. for each Y ∈ Sn+1 there exists X ∈ Sn such that Y ∈ ϑ(X);

2. if X1, X2 ∈ Sn and X1 6= X2, then ϑ(X1)
⋂

ϑ(X2) = ∅;

then, the family of sets Fn+1 = {ϑ(X) : ∀X ∈ Sn} is a partition of Sn+1.

The operator ϑ will be called ECO operator.

A succession rule Ω, as said above, can be useful to encode the ECO

construction of a class of objects. Usually, it looks as a formal system as
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follows:

Ω :





(a)

(k) Ã (b1(k))(b2(k)) . . . (bk)(k)

where (a), (k) and (bi(k)) are the labels of the rule (positive integers). Each

objects of the class has a label which generally represents the cardinality of

the set of objects which can be generated from it. In a few words, the label

of an objects is the number of its sons. The axiom of the rule is (a) and is

the label of the minimal object of the class, with respect to the parameter

we are basing on for the enumeration of the objects. The second line of the

succession rule is said production of the label (k) (note that in a succession

rule the productions can be more than one). A rule Ω is often figured with

a generating tree, where (a) is the root and each node is a label (k) having

k sons whose labels are those ones specified in the production of (k).



Chapter 2

Enumeration of generalized

pattern avoiding

permutations

The results of the first part of this chapter (Sections 2.2, 2.3, 2.4) concern the

exact enumeration of the permutations, according to their length, avoiding

any set of four or five generalized patterns [BS] of type (1, 2) or (2, 1). The

cases of the permutations avoiding one, two or three generalized patterns (of

the same types) were solved in [C], [CM] and [BFP], respectively. In partic-

ular, in [CM] the authors conjectured the plausible sequences enumerating

the permutations of Sn(P ), for any set P of three or more patterns.

In [BFP], the proofs were substantially conducted by finding the ECO

construction [BDPP1] for the permutations avoiding three generalized pat-

terns of type (1, 2) or (2, 1), encoding it with a succession rule and, finally,

checking that this one leads to the enumerating sequence conjectured in

[CM]. This approach could be surely used also for the investigation of the

avoidance of four or five generalized patterns of type (1, 2) or (2, 1) and,

maybe, it would allow to find same nice and interesting results: we think
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that, for instance, in same case new succession rules for known sequences

would appear. Nevertheless, this approach has just one obstacle: the large

number of cases to consider in order to exhaust all the conjectures in [CM].

The line we are going to follow (see below) is simple and allows us to reduce

the number of cases to be considered. Most of the results are summarized in

several tables which are presented in the pages of the chapter. Really, this

work could appear an easy exercise, but we believe that it is a valuable con-

tribute to the classification of permutations avoiding generalized patterns,

started with Claesson, Mansour, Elizalde and Noy [EN], Kitaev [K]. More-

over, it can be seen as the continuation of the work started in [BFP] for the

fulfillment of the proofs of the conjectures presented in [CM].

2.1 The strategy

Looking at the table of [CM] where the authors present their conjectures, it

is possible to note that most of the sequences enumerating the permutations

avoiding four patterns are the same of those ones enumerating the permu-

tations avoiding three patterns. A similar fact happens when the forbidden

patterns are four and five. This suggests to use the results for the case of

three forbidden patterns (at our disposal) to deduce the proof of the conjec-

tures for the case of four forbidden patterns and, similarly, use the results

for the case of four forbidden patterns to solve the case of five forbidden

patterns. Indeed, it is obvious that S(p1, p2, p3, p4) ⊆ S(pi1 , pi2 , pi3) (with

ij ∈ {1, 2, 3, 4} and pl ∈ M). If the inverse inclusion can be proved for

some patterns, then the classes S(p1, p2, p3, p4) and S(pi1 , pi2 , pi3) coincide

and they are enumerated by the same sequence (a similar argument can be

used for the case of four and five forbidden patterns).

The following eight propositions are useful to this aim, as well: each of

them proves that if a permutation avoids certain patterns, than it avoids also

a further pattern. Therefore, it is possible to apply one of them to a certain
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class S(pi1 , pi2 , pi3) to prove that S(pi1 , pi2 , pi3) ⊆ S(p1, p2, p3, p4) (the gen-

eralization to the case of four and five forbidden pattern is straightforward).

The proof of the first four of them can be found in [BFP].

Proposition 2.1.1 If π ∈ S(2− 13), then π ∈ S(2− 13, 21− 3).

Proposition 2.1.2 If π ∈ S(31− 2), then π ∈ S(31− 2, 3− 12).

Proposition 2.1.3 If π ∈ S(2− 31), then π ∈ S(2− 31, 23− 1).

Proposition 2.1.4 If π ∈ S(13− 2), then π ∈ S(13− 2, 1− 32).

Proposition 2.1.5 If π ∈ S(1−23, 2−13), then π ∈ S(1−23, 2−13, 12−3).

Proof. Suppose that π contains a 12−3 pattern in the entries πi, πi+1 and

πk (k > i+1). Let us consider the entry πi+2. It can be neither πi+2 > πi+1

(since πi πi+1 πi+2 would show a pattern 1 − 23) nor πi+2 < πi+1 (since

πi+1 πi+2 πk would show a pattern 21 − 3 which is forbidden thanks to

Proposition 2.1.1).

¤

(The proof of the following proposition is very similar and is omitted.)

Proposition 2.1.6 If π ∈ S(1−23, 21−3), then π ∈ S(1−23, 21−3, 12−3).

Proposition 2.1.7 If π ∈ S(1−23, 2−31), then π ∈ S(1−23, 2−31, 12−3).

Proof. Suppose that a pattern 12 − 3 appear in πi, πi+1 and πk. If

we consider the entry πk−1, then it is easily seen that it can be neither

πi < πk−1 < πk (the entries πi πk−1 πk would be 1 − 23 pattern like) nor

πk−1 < πi (the entries πi πi+1 πk−1 would show a pattern 23 − 1 which is

forbidden thanks to Proposition 2.1.3). Hence, πk−1 > πk. We can repeat

the same above argument for the entry πj , j = k − 2, k − 3, . . . , i + 2,

concluding each time that πj > πj+1. When j = i + 2 a pattern 1 − 23 is

shown in πi πi+1 πi+2, which is forbidden.
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¤

Proposition 2.1.8 If π ∈ S(1−23, 23−1), then π ∈ S(1−23, 23−1, 12−3).

This last proposition can be be proved by simply adapting the argument of

the proof of the preceding one.

2.2 Permutations avoiding four patterns

First of all we recall the results of [BFP] in Tables 2.1 and 2.2. For the seek of

brevity, for each symmetry class only a representative is reported. In the first

column of these tables, a name to each symmetry class is given (as in [BFP]),

the second one shows the three forbidden patterns (the representative) and

the third one indicates the sequence enumerating the permutations avoiding

the specified patterns.

Having at our disposal the results for the permutations avoiding three

patterns, the proofs for the case of four forbidden patterns are conducted

following the line indicated in the previous section. These proofs are all sum-

marized in tables. Tables 2.3, 2.4 and 2.5 are related to the permutations

avoiding four patterns enumerated by the sequences {n}n≥1, {Fn}n≥1 and

{2n−1}n≥1, respectively (the succession Fn denotes the Fibonacci numbers).

As in [BFP], the empty permutation with length n = 0 is not considered,

therefore the length is n ≥ 1. The tables have to be read as follows: consider

the representative of the symmetry class specified in the rightmost column

of each table; apply the proposition indicated in the precedent column to

the three forbidden patterns which one can find in Tables 2.1 and 2.2 to

obtain the four forbidden patterns written in the column named avoided

patterns. At this point, as we explained in the previous section, the permu-

tations avoiding these four patterns are enumerated by the same sequence

enumerating the permutations avoiding the three patterns contained in the

representative of the symmetry class indicated in the rightmost column.
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The first column of Table 2.3 and 2.4 specifies a name for the the symme-

try class represented by the four forbidden patterns of the second column.

This name is useful in the next section. Table 2.12 indicates in the first

column the sequence enumerating the permutations avoiding the patterns

of the second column, which are obtained as in the above tables.

2.2.1 Classes enumerated by {0}n≥k.

The classes of four patterns avoiding permutations enumerated by the se-

quence {0}n≥k can be handled in a very simple way. If S(q1, q2, q3), qi ∈M,

is a class of permutations avoiding three patterns such that |Sn(q1, q2, q3) =

0|, for n ≥ k, then it is easily seen that S(q1, q2, q3, r), ∀r ∈ M, is also

enumerated by the same sequence. Then, each symmetry class from C1 to

C7 (see Table 2.2) generates nine symmetry classes by choosing the pattern

r 6= qi, i = 1, 2, 3. It is not difficult to see that all the classes we obtain in

this way are not all different, thanks to the operations of reverse, comple-

ment and reverse-complement. In Table 2.6, only the different possible cases

are presented. Here, the four forbidden patterns are recovered by adding a

pattern of a box of the second column to the three patterns specified in the

box to its right at the same level (rightmost column). The representative

so obtained is recorded in the leftmost column with a name, which will be

useful in the next section.

2.2.2 Classes enumerated by {2}n≥2.

The enumerating sequences encountered till now (see Tables 2.3, 2.4, 2.5,

2.12, 2.6) are all involved in the enumeration of some class of permutations

avoiding three patterns (Tables 2.1, 2.2). Therefore, applying the eight

propositions of the previous section to the classes of Table 2.1 and 2.2,

the three forbidden patterns have been increased by one pattern, obtaining

Table 2.3, 2.4, 2.5, 2.12 and 2.6. For the classes enumerated by the sequence
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{2}n≥2 it is not possible to use the same strategy, since there are no classes

of permutations avoiding three patterns enumerated by that sequence. The

proofs, in this case, use four easy propositions whose proofs can be directly

derived from the statement of the first four propositions of Section 2.1. We

prefer to explicit them the same.

Proposition 2.2.1 If a permutation π contains the pattern 23− 1, then it

contains the pattern 2− 31, too.

Taking the reverse, the complement and the reverse-complement of the

patterns involved in Prop. 2.2.1, the following propositions are obtained:

Proposition 2.2.2 If a permutation π contains the pattern 1− 32, then it

contains the pattern 13− 2, too.

Proposition 2.2.3 If a permutation π contains the pattern 21− 3, then it

contains the pattern 2− 13, too.

Proposition 2.2.4 If a permutation π contains the pattern 3− 12, then it

contains the pattern 31− 2, too.

In Table 2.7 the results relating to the enumeration of the permutations

avoiding four patterns enumerated by the sequence {2}n≥2 (whose proofs are

contained in the six next propositions) are summarized. The four forbidden

patterns can be recovered by choosing one pattern from each column, in the

same box-row of the table.

In the sequel, pi ∈ Ai with i = 1, 2, 3, 4 where Ai is a subset of generalized

patterns.

Proposition 2.2.5 Let A1 = {1 − 23}, A2 = {2 − 31, 23 − 1}, A3 = {1 −
32, 13 − 2} and A4 = {3 − 12, 31 − 2}. Then |Sn(p1, p2, p3, p4)| = 2 and

Sn = {n (n− 1) . . . 3 2 1, (n− 1) (n− 2) . . . 3 2 1 n}.
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Proof. Let σ ∈ Sn(p2, p3). Then, σ1 = n or σn = n, otherwise, if σi = n

with i 6= 1, n , the entries σi−1σiσi+1 would be a forbidden pattern p2 or p3.

If ρ ∈ Sn(p1, p3), then ρn−1 = 1 or ρn = 1, otherwise, if ρi = 1 with

i < n − 1, then the entries ρiρi+1ρi+2, would be a forbidden pattern p1 or

p3.

Therefore, if π ∈ Sn(p1, p2, p3), then there are only the following three

cases for π:

1. πn = n and πn−1 = 1. In this case π = (n − 1) (n − 2) . . . 2 1 n,

otherwise, if an ascent appears in πjπj+1 with j = 1, 2, . . . , n− 3, the

entries πjπj+1πn−1 would show the pattern 23−1 and π would contain

the pattern 2− 31, too (see Prop. 2.2.1).

2. π1 = n and πn = 1. In this case π = n (n−1) . . . 3 2 1, otherwise, if an

ascent appears in πjπj+1 with j = 2, 3, . . . , n− 2, the entries πjπj+1πn

would show the pattern 23−1 and π would contain the pattern 2−31,

too (see Prop. 2.2.1).

3. π1 = n and πn−1 = 1 (and πn = k < n).

If π has to avoid the pattern p4, too (π ∈ Sn(p1, p2, p3, p4)), then the

third above case is not allowed since π1πn−1πn are a 3 − 12 pattern which

induces an occurrence of 31− 2 in π (Prop. 2.2.4).

¤

Proposition 2.2.6 Let A1 = {1 − 23}, A2 = {2 − 13, 21 − 3}, A3 = {1 −
32, 13 − 2} and A4 = {3 − 12, 31 − 2}. Then |Sn(p1, p2, p3, p4)| = 2 and

Sn = {n (n− 1) . . . 3 2 1, (n− 1) n (n− 2) (n− 3) . . . 2 1}.

Proof. If σ ∈ Sn(p1, p2), then π1 = n or π2 = n. If ρ ∈ Sn(p1, p3), then

πn = 1 or πn−1 = 1. Then, if π ∈ Sn(p1, p2, p3), there are only the four

following cases:
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1. π1 = n and πn = 1.

2. π2 = n and πn = 1. In this case π1 = n − 1, otherwise if πk = n − 1

with k > 3, then πk−2πk−1πk is a 1 − 23 pattern or a 21 − 3 pattern

which induces an occurrence of 2 − 13 (Prop. 2.2.3). If k = 3, then

π1π2π3 is a 1− 32 or 13− 2 pattern which are forbidden.

3. π1 = n and πn−1 = 1.

4. π2 = n and πn−1 = 1. For the same reasons of case 2, it is π1 = n− 1.

If π has to avoid p4, too (π ∈ Sn(p1, p2, p3, p4)), then the third and the

fourth above cases are not allowed since π1πn−1πn are a 3−12 pattern which

induces an occurrence of 31− 2 (Prop. 2.2.4). Moreover, the permutations

of the above cases 1 and 2, must be such that there are not ascents πiπi+1

between n and 1 in order to avoid p4. Then, π = n (n − 1) . . . 3 2 1 or

π = (n− 1) n (n− 2) . . . 3 2 1.

¤

Proposition 2.2.7 Let A1 = {2 − 13, 21 − 3}, A2 = {2 − 31, 23 − 1},
A3 = {1−32, 13−2} and A4 = {3−12, 31−2}. Then |Sn(p1, p2, p3, p4)| = 2

and Sn = {n (n− 1) . . . 2 1, 1 2 . . . n}.

Proof. It is easily seen that each three consecutive elements of π can

only be in increasing or decreasing order.

¤

Proposition 2.2.8 Let A1 = {12 − 3}, A2 = {2 − 13, 21 − 3}, A3 = {2 −
31, 23 − 1} and A4 = {32 − 1}. Then |Sn(p1, p2, p3, p4)| = 2 and Sn =

{1 n 2 (n− 1) . . . , n 1 (n− 1) 2 . . .}.

Proof. If π ∈ Sn(p1, p2, p3, p4), then it is easy to see that π1π2 = 1 n

or π1π2 = n 1. Considering the sub-permutation π2π3 . . . πn, in the same
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way we deduce π2π3 = 2 (n− 1) or π2π3 = (n− 1) 2. The thesis follows by

recursively using the above argument.

¤

Proposition 2.2.9 Let A1 = {1 − 23}, A2 = {2 − 13, 21 − 3}, A3 = {2 −
31, 23 − 1} and A4 = {3 − 12, 31 − 2}. Then |Sn(p1, p2, p3, p4)| = 2 and

Sn = {n (n− 1) . . . 1, 1 n (n− 1) . . . 3 2}.

Proof. Let π ∈ Sn(p1, p2, p3, p4). It is π1 = n or π2 = n, otherwise a

1− 23 or p2 pattern would appear.

If π1 = n, then π = n (n − 1) . . . 1 since if an ascent appears in πiπi+1,

the entries π1πiπi+1 are a p4 pattern.

If π2 = n, then π1 = 1 since the p3 pattern has to be avoided. Moreover,

in this case, it is πj > πj+1 with j = 3, 4, . . . , (n−1) in order to avoid 1−23.

Then π = 1 n (n− 1) . . . 2 1.

¤

Proposition 2.2.10 Let A1 = {1 − 23}, A2 = {2 − 13, 21 − 3}, A3 =

{2− 31, 23− 1} and A4 = {1− 32, 13− 2}. Then |Sn(p1, p2, p3, p4)| = 2 and

Sn = {n (n− 1) . . . 3 2 1, n (n− 1) . . . 3 1 2}.

Proof. Let π ∈ Sn(p1, p2, p3, p4). The entries 1 and 2 have to be adjacent

in order to avoid p3 and p4 and πn = 1 or πn−1 = 1 in order to avoid p1 and

p4. So, πn−1πn = 1 2 or πn−1πn = 2 1. Moreover, each couple of adjacent

elements πjπj+1 must be a descent, otherwise a 23−1 pattern (which induces

an occurrences of 2 − 31) would appear. Then π = n (n − 1) . . . 3 2 1 or

π = n (n− 1) . . . 3 1 2.

¤

The conjecture stated in [CM] about the permutations enumerated by

{2}n≥2 declares that there are 42 symmetry classes of such permutations,
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while from Table 2.7 it is possible to deduce 52 symmetry classes. Never-

theless, it is not difficult to check that these classes are not all different: for

example the symmetry class {2 − 13, 2 − 31, 1 − 32, 31 − 2} is the same of

{2−13, 23−1, 13−2, 31−2} (the second one is the reverse of the first one).

Note that the repetitions come out only from the third box-row of Table 2.7.

2.3 Permutations avoiding five patterns

2.3.1 Classes enumerated by {1}n≥1

The sequence {1}n≥1 does not enumerate any class of permutations avoiding

four patterns, so that we can not apply the same method of the previous

section using the proposition of the Introduction.

Referring to Proposition 2.2.7, we deduce that there are sixteen different

classes Sn(p1, p2, p3, p4) such that pi ∈ Ai with i = 1, 2, 3, 4. We recall that

|Sn(p1, p2, p3, p4)| = 2 and Sn(p1, p2, p3, p4) = {n (n − 1) . . . 2 1, 1 2 . . . n}.
If a permutation π ∈ Sn(p1, p2, p3, p4) has to avoid the pattern 1− 23, too,

then π = n (n− 1) . . . 2 1 and |Sn(p1, p2, p3, p4, 1− 23)| = 1.

Then, it is easy to see that the five forbidden patterns avoided by the

permutations enumerated by {1}n≥1 can be recovered by considering the

four patterns chosen from the third box-row of Table 2.7 (one pattern from

each column) and the pattern 1− 23. We do not present the relative table.

2.3.2 Classes enumerated by {0}n≥k

This case is treated as the case of the permutations avoiding four patterns.

It is sufficient to add a pattern r ∈ M to each representative (from O1 to

O37 in Table 2.6) of four forbidden patterns of Table 2.6 in order to obtain

a representative T of five forbidden patterns such that |Sn(T )| = 0, n ≥ 4.

In Table 2.8 we present the different representatives T which can be derived

from Table 2.6. The five forbidden patterns of each representative are a
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pattern chosen in a box of the first column and the four patterns indicated

by the representative (which refer to Table 2.6) in the second box at the

same level. In the table, only the different representatives of five patterns

are presented.

2.3.3 Classes enumerated by {2}n≥k, {n}n≥1, {Fn}n≥1

Tables 2.9 and 2.10 summarize the results related to the permutations avoid-

ing five patterns enumerated by {2}n≥k. The five forbidden patterns are

obtained by considering a representative of four forbidden patterns of the

rightmost column and the pattern specified in the corresponding box of the

preceding column. The first column indicates which is the proposition to

apply. Note that each representative of four patterns (rightmost column)

can be found in Table 2.7.

The reading of Tables 2.11 and 2.13 (related to the sequences {n}n≥1

and {Fn}n≥1, respectively) is as usual: apply the proposition specified in the

first column to recover the representative of five forbidden patterns which is

composed by the pattern of the second column and the four patterns of the

representative indicated in the rightmost column. Here, the names of the

representatives refer to Tables 2.3 and 2.4.

2.4 Conclusion: the cases of more than five pat-

terns

The approach we have followed in this work can be used to investigate the

enumeration of the permutations avoiding more than five patterns. Really,

applying the same propositions (we have herein used) to the results about

the case of the avoidance of five patterns, one can try to solve the conjectures

for the case of six patterns. The successive cases can be examined in a similar

way.



Chapter 2. Enumeration of generalized pattern avoiding permutations 26

The case of six patterns is the unique, among the remaining, which

presents some enumerating sequence not definitively constant (as it can be

checked by looking at the tables of the conjectures in [CM]). We note

also that all these sequences appear in the enumeration of the case of five

patterns. If |Sn(P )| is required, with P ⊆ M, |P | = 6, it should take

a few minutes to find the set Q of five generalized patterns such that the

application of a certain proposition on Q (among those ones presented in this

work) leads to the set P of six forbidden patterns. So |Sn(Q)| = |Sn(P )|.
Clearly, we are not sure that such a set Q exists since the statements in [CM]

are only conjectures. Moreover, it is not sure even the fact that any subset P

could be obtained by applying some proposition to some patterns of Q ⊂ P .

Nevertheless, the application of the above mentioned propositions to the

sets Q of five forbidden patterns should be confirm most of the conjectures

about the case of six patterns. This is the reason why we did not present the

analysis of this case, together with the fact that several other tables would

have appeared in these pages!

To conclude, we think that a further work about the cases of more than

six forbidden patterns does not seem to be necessary, since many of the

remaining conjectures in [CM] can be easily proved. Moreover, if Sn(P ) is

needed, with |P | > 6, an argument similar to the case |P | = 6 can be done.

2.5 Some statistics on permutations avoiding gen-

eralized patterns

2.5.1 Preliminaries

In the last decade a huge amount of articles has been published studying

pattern avoidance on permutations. From the point of view of enumeration,

typically one tries to count permutations avoiding certain patterns according

to their lengths. Here we tackle the problem of refining this enumeration
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by considering the statistics “first/last entry”. We give complete results for

every generalized patterns of type (1, 2) or (2, 1) as well as for some cases of

permutations avoiding a pair of generalized patterns of the above types.

The twelve generalized patterns of P are organized in three symmetry

classes : {1 − 23, 32 − 1, 3 − 21, 12 − 3}, {3 − 12, 21 − 3, 1 − 32, 23 − 1}
and {2 − 13, 31 − 2, 2 − 31, 13 − 2}. If p and p′ are two patterns such that

|Sn(p)| = |Sn(p′)|, then p and p′ are said to be in the same Wilf class [M1].

Since in [C] it is shown that

• |Sn(p)| = Bn,

for p ∈ {1− 23, 32− 1, 3− 21, 12− 3}⋃{3− 12, 21− 3, 1− 32, 23− 1}

• |Sn(p)| = Cn,

for p ∈ {2− 13, 31− 2, 2− 31, 13− 2},

where Bn and Cn are the n-th Bell and Catalan numbers, respectively, then

we can say that P is organized in two Wilf classes: {1−23, 32−1, 3−21, 12−
3, 3− 12, 21− 3, 1− 32, 23− 1} and {2− 13, 31− 2, 2− 31, 13− 2}.

In this work, we refine some enumerative results on S(p), p ∈ P, namely

we count p-avoiding permutations, for each p, according to their length and

the value of their first or last entry. Next we solve the same problem for

some classes of permutations of the kind S(p, q), p, q ∈ P, and we conclude

by proposing to tackle this problem for any remaining pair of generalized

patterns of P.

Our results are achieved by using the ECO method together with a

graphical representation of permutations. In the following we only briefly

recall the ECO construction for (patterns avoiding) permutations, for more

details we refer the reader to [BDPP1] and [BFP].

Any permutation of length n can be visualized using a path-like repre-

sentation, as in Figure 2.1. Note that the plane is divided in n + 1 strips
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Figure 2.1 An ECO construction for permutations

by the n horizontal lines which are numerated from 1 to n, starting from

bottom (in the sequel, we refer to these strips as “regions”: region i is in-

cluded between line i− 1 and line i, whereas region 1 is the one below line

1 and region n + 1 is the one above line n). Each entry of the permutation

is represented as a “node” lying on the line corresponding to its value. If

π ∈ Sn, then n + 1 permutations belonging to Sn+1 can be obtained by

inserting a new node in each region of the plane. If we wish to generate the

permutations in Sn+1(P ) obtained in such a way from π ∈ Sn(P ), where P

is a set of forbidden patterns, then the regions the last node can be inserted

in form a subset of all the n + 1 possible regions; in the framework of the

ECO method they are called active sites [BDPP1]. A remarkable feature of

this construction is that, if π ∈ Sn(P ), then π′ ∈ Sn+1 (which is obtained

from π by inserting the last node in one of the regions) does not contain the

patterns specified in P in its entries π′j with j = 1, . . . , n, otherwise π itself

would contain some pattern of P . So, to decide if a region i is an active

site or not, we just have to check those generalized patterns the last node is

involved in.
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2.5.2 The symmetry class {1− 23, 32− 1, 3− 21, 12− 3}

ECO construction and generating tree of S(1− 23)

Let π ∈ Sn(1 − 23). If πn = k 6= 1, then π generates k permutations

π(i) ∈ Sn+1(1 − 23), i = 1, 2, . . . , k, by inserting a new node in region i. If

πn = 1, then π generates n+1 permutations by inserting a new node in any

region. Note that in this case the number of sons of π is determined by the

length of π. If π(r) ∈ Sn+1(1− 23) denotes the permutation of Sn+1(1− 23)

derived from π ∈ Sn(1− 23) by inserting the last node in region r, it is easily

seen that π(1) generates, in turns, n + 2 permutations, whereas π(r), r 6= 1,

produces r permutations of Sn+2(1 − 23). This ECO construction can be

represented as in Figure 2.2 and, if we label with (k, n) each permutation of

Sn(1−23) having k active sites, it can be encoded by the following succession

rule:

Ω :





(2, 1)

(k, n) Ã (2, n + 1)(3, n + 1) · · · (k, n + 1)(n + 2, n + 1) .

We now wish to draw the generating tree related the the previous suc-

cession rule. For the sake of simplicity and for reasons that will become

clear later, we choose to label the nodes of the generating tree using the

number of their sons, which correspond to the first element of each label of

the succession rule. In Figure 2.3 we have depicted the first levels of the

generating tree of S(1 − 23). Here the labels in bold character correspond

to the labels of the kind (n + 1, n) in the succession rule. Observe that the

production of each label depends on its level in the generating tree.

Distribution according to the length and the last value

Starting from the generating tree of Figure 2.3, we can consider the matrix

M = (mij)i,j≥1 where mi,j is the number of labels j + 1 at level i in the

generating tree:
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Figure 2.2 ECO construction of S(1− 23)
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Figure 2.3 The generating tree of S(1− 23)
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M =

0
BBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0
.
..

1 1 0 0 0 0
.
..

2 1 2 0 0 0
..
.

5 3 2 5 0 0
...

15 10 7 5 15 0
.
..

52 37 27 20 15 52
..
.

· · · · · · · · · · · · · · · · · ·
. . .

1
CCCCCCCCCCCCCCCCCCCCCA

The above matrix M is called the ECO matrix of the rule Ω, according

to [DFR1]. It is easily seen that M can be recursively described as follows:

1. m1,1 = 1 (the minimal permutation π = 1 has two sons);

2. mn,k = 0 if k > n (each permutation of length n has at most n sons);

3. mn,k =
∑n−1

i=k mn−1,i if k < n (this derives directly from the recursive

interpretation of the previous succession rule);

4. mn,n = mn,1 (each permutation of length n− 1 produces precisely one

son having label 2 and precisely one son having label n + 1).

Since mn,1(= mn,n) is the sum of all the elements in the (n − 1)-th

row (for n > 1), this entry records the total number of (1 − 23)-avoiding

permutations of length n− 1. In other words, mn,1 = Bn−1.

Moreover, from a careful inspection of M , we have that mn,k−1, with

k = 2, . . . , n, is the number of permutations of Sn(1 − 23) ending with k

and mn,n is the number of permutations of Sn(1− 23) ending with 1. Then,

if we move the diagonal of M such that it becomes the first column of the

matrix, we obtain a new matrix A = (ai,j)i,j≥1 where ai,j is the number of

(1− 23)-avoiding permutations of length i ending with j.
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A =

0
BBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0
.
..

1 1 0 0 0 0
.
..

2 2 1 0 0 0
..
.

5 5 3 2 0 0
...

15 15 10 7 5 0
.
..

52 52 37 27 20 15
..
.

· · · · · · · · · · · · · · · · · ·
. . .

1
CCCCCCCCCCCCCCCCCCCCCA

The matrix A is essentially the Bell triangle, which can be found in [W]

together with several other references.

The above recursive properties of M can be immediately translated as

follows:

1. a1,1 = 1 (the minimal permutation ends, trivially, with 1);

2. an,k = 0 if k > n (each permutation of length n cannot end with a

number greater than n itself);

3. an,k =
∑n−1

i=k an−1,i + an−1,1 if 2 ≤ k ≤ n (the diagonal of M has been

moved in the first column of A);

4. an,1 = an,2 (since an,1 = mn,n = mn,1 = an,2).

From 3 we obtain, for k ≥ 3:

an,k = an,k−1 − an−1,k−1,

If we denote by ∇ the usual backward difference operator, since an,2 =

Bn−1, we get:

an,k = ∇an,k−1

= ∇2an,k−1

= · · ·

= ∇k−2an,2 = ∇k−2Bn−1 (which holds also for k = 2).
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Thus we find the following formulas concerning the distribution of 1−23-

avoiding permutations according to their length and to the value of their last

entry:

|{π ∈ Sn(1− 23) : πn = 1}| = Bn−1, n ≥ 1;

|{π ∈ Sn(1− 23) : πn = k}| = ∇k−2(Bn−1), 2 ≤ k ≤ n.

The other patterns of the class

The arguments employed for S(1− 23) can be easily modified for the other

patterns of the symmetry class of 1 − 23, obtaining similar results. The

ECO construction, in these cases, has to be adapted in order to obtain the

same succession rule and the same generating tree we got for S(1−23). The

matrices M and A are defined as in the previous section.

1. For the reverse pattern of 1 − 23, i.e. 32 − 1, we find that ai,j is the

number of permutations π of length i such that π1 = j, and so:

• |{π ∈ Sn(32− 1) : π1 = 1}| = Bn−1, n ≥ 2 ;

• |{π ∈ Sn(32− 1) : π1 = k}| = ∇k−2(Bn−1), 2 ≤ k ≤ n.

Note that in this case the ECO construction can be, in some way,

“reversed”, so that the active sites are not on the right of the diagram

of the permutation π but on its left, i.e. before the first entry of π.

2. For the complement pattern 3− 21, we have that ai,j is the number of

permutations of length i ending with i + 1− j:

• |{π ∈ Sn(3− 21) : πn = n}| = Bn−1, n ≥ 1;

• |{π ∈ Sn(3− 21) : πn = k}| = ∇n−k−1(Bn−1), 1 ≤ k ≤ n− 1.

3. For the reverse-complement pattern 12− 3, ai,j is the number of per-

mutations π of length i such that π1 = i + 1− j, and so:

• |{π ∈ S(12− 3) : π1 = n}| = Bn−1, n ≥ 1;
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• |{π ∈ S(12− 3) : π1 = k}| = ∇n−k−1(Bn−1), 1 ≤ k ≤ n− 1.

2.5.3 The symmetry class {3− 12, 21− 3, 1− 32, 23− 1}

ECO construction and generating tree of S(3− 12)

Let π ∈ Sn(3 − 12). If πn = k − 1 6= n, then π generates k permutations

π(i) ∈ Sn+1(3 − 12), i = 1, 2, . . . , k − 1, n + 1, by inserting a new node in

region i. If πn = n, then π generates n + 1 permutations by inserting a

new node in any region. As it happened for the class S(1 − 23), note that

the number of sons of π is determined by the length of π. It is easily seen

that π(n+1) generates, in turns, n+2 permutations, whereas π(i) (i 6= n+1)

produces i+1 permutations. This ECO construction is illustrated in Figure

2.4. If each permutation of Sn(3− 12) with k active sites is labelled (k, n),

then such a construction can be encoded using the following succession rule:




(2, 1)

(k, n) Ã (2, n + 1)(3, n + 1) · · · (k, n + 1)(n + 2, n + 1) .

Since it is the same succession rule we got for S(1− 23), the generating

tree for S(3− 12) can be obtained in the same way.

Distribution according to the length and the last value

Defining the matrix M = (mij)i,j≥1 as in Section 2.5.2, it can be easily

deduced that mn,k is the number of permutations of Sn(3− 12) ending with

k. Note that in this case we do not need to move the diagonal of M to obtain

the final matrix. Therefore, using again the backward difference operator

∇, the entries of M have the form:

mn,k = ∇k−1(Bn−1)

whence:

|{π ∈ Sn(3− 12) : πn = n}| = Bn−1, n ≥ 2 ;
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Figure 2.4 ECO construction of S(3− 12)
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|{π ∈ Sn(3− 12) : πn = k}| = ∇k−1(Bn−1), 1 ≤ k ≤ n− 1 .

The other patterns of the class

Proceeding as in Section 2.5.2, we get:

• |{π ∈ Sn(21− 3) : π1 = n}| = Bn−1, n ≥ 2;

• |{π ∈ Sn(21− 3) : π1 = k}| = ∇k−1(Bn−1), 1 ≤ k ≤ n− 1;

• |{π ∈ Sn(1− 32) : πn = 1}| = Bn−1, n ≥ 2;

• |{π ∈ Sn(1− 32) : πn = k}| = ∇n−k(Bn−1), 2 ≤ k ≤ n ;

• |{π ∈ Sn(23− 1) : π1 = 1}| = Bn−1, n ≥ 2 ;

• |{π ∈ Sn(23− 1) : π1 = k}| = ∇n−k(Bn−1), 2 ≤ k ≤ n.

2.5.4 The symmetry class {2− 13, 31− 2, 2− 31, 13− 2}

The permutations of S(2− 13) are enumerated by Catalan numbers [C]. As

far as the ECO construction of S(2− 13) is concerned, we just note that, if

π ∈ Sn(2 − 13) is such that πn = k, then region i, for i = 1, 2, . . . , k + 1, is

an active site for π. The succession rule encoding this construction is:




(2)

(k) Ã (2)(3) · · · (k + 1)

Defining the matrix M as in the preceding sections, we obtain

M =

0
BBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0
.
..

1 1 0 0 0 0
..
.

2 2 1 0 0 0
...

5 5 3 1 0 0
.
..

14 14 9 4 1 0
..
.

42 42 28 14 5 1
...

· · · · · · · · · · · · · · · · · ·
. . .

1
CCCCCCCCCCCCCCCCCCCCCA
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which is the well-known Catalan Triangle whose entries mi,j = j
i

(
2i−j−1

i−1

)

are the ballot numbers and whose properties can be found, for example, in

[NZ].

In the following, we present the results for all the patterns of the class,

which can be derived as in the previous sections (the mn,k’s are defined as

before):

• |{π ∈ Sn(2− 13) : πn = k}| = mn,k = k
n

(
2n−k−1

n−1

)
;

• |{π ∈ Sn(31− 2) : π1 = k}| = mn,k = k
n

(
2n−k−1

n−1

)
;

• |{π ∈ Sn(2− 31) : πn = k}| = mn,n−k+1 = n−k+1
n

(
n+k−2

n−1

)
;

• |{π ∈ Sn(13− 2) : π1 = k}| = mn,n−k+1 = n−k+1
n

(
n+k−2

n−1

)
.

2.5.5 Permutations avoiding a pair of generalized patterns

of type (1, 2) or (2, 1)

In [CM] Claesson and Mansour counted permutations avoiding a pair of

generalized patterns of type (1,2) or (2,1). Similarly to what we have done in

the previous sections, we can study the distribution of the statistic “first/last

entry” on permutations avoiding two or more generalized patterns. Here,

we consider only two special examples, the former being quite easy, whereas

the latter is surely more interesting. All the remaining cases are left to the

readers as open problems for future research.

An easy case

We first deal with the permutations of S(1 − 23, 1 − 32). This class is

enumerated by the number In of involutions in Sn (see [CM]). An ECO

construction of this class can be encoded by the following succession rule :

Ω :





(2, 1)

(1, n) Ã (n + 2, n + 1)

(n + 1, n) Ã (1, n + 1)n(n + 2, n + 1)
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where the first element in the label is the number of active sites of the permu-

tation and the second one is its length. This can be checked by representing

permutations by means of the usual path-like representation: indeed, if a

permutation ends with 1, then an element can be inserted on its right in any

region, whereas if a permutation ends with k 6= 1, then the only element

which can be inserted must be placed in region 1 on the right. The reader

is invited to complete the details, so to obtain the construction described

precisely by the succession rule Ω.

From the generating tree of Ω, the matrix M whose entry mi,j is the

number of vertices with label j at level i (i, j ≥ 1) can be constructed as in

the preceding cases:

M =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0
..
.

1 0 1 0 0 0 0 0
...

2 0 0 2 0 0 0 0
.
..

6 0 0 0 4 0 0 0
..
.

16 0 0 0 0 10 0 0
..
.

50 0 0 0 0 0 26 0
.
..

156 0 0 0 0 0 0 76
.
..

· · · · · · · · · · · · · · · · · · · · · · · ·
. . .

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

.

The entries can be immediately computed as follows:

• m1,1 = 0 , m1,2 = 1 ;

• mn,1 = (n− 1)mn−1,n , n ≥ 2 ;

• mn,n+1 = mn−1,1 + mn−1,n , n ≥ 2 ;

• mi,j = 0 in all the other cases.

From the ECO construction it easily appears that the first column of M

counts the permutations π of Sn(1−23, 1−32) such that πn−1 = 1 (or, which

is the same, πn 6= 1), whereas the super-diagonal sequence mn,n+1 (n ≥ 1)
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Figure 2.5 The generating tree of S(1− 23, 21− 3)

shows the number of π ending with 1. Since if π ∈ Sn(1− 23, 1− 32), then

πn−1 = 1 or πn = 1, we deduce that the super-diagonal satisfies mn,n+1 =

In−1 (n ≥ 1).

A not so easy case

Our second example concerns the permutations of the class S(1−23, 21−3),

which also coincide with those of S(1 − 23, 21 − 3, 12 − 3)(see [BFP]) and

are enumerated by Motzkin numbers. We will find the distribution of these

permutations according to their length and their last entry; moreover, we

will be able to derive the generating function of the sequences enumerating

the permutations of this class whose last entry is k, for k = 1, 2, . . .. We start

by recalling the coloured succession rule Φ encoding an ECO construction

for the above set of permutations (which can be found in [BFP]):

Φ :





(2̄)

(k̄) Ã (2̄)(2)(3) · · · (k)

(k) Ã (2)(3) · · · (k)(k + 1) .

In Figure 2.5, the first levels of the corresponding generating tree are pre-

sented.

As in the preceding examples, we construct a matrix A = (ai,j)i,j≥1

recording in its entries the number of labels at each level of the tree: namely,
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ai,1 is the number of coloured label k̄, k ≥ 2, at level i of the tree and ai,j ,

j ≥ 2, is the number of labels j at level i. The first lines of A are:

A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0
...

1 1 0 0 0 0
.
..

2 2 0 0 0 0
..
.

4 4 1 0 0 0
...

9 9 3 0 0 0
.
..

21 21 8 1 0 0
..
.

51 51 21 4 0 0
..
.

127 127 55 13 1 0
.
..

323 323 145 39 5 0
.
..

835 835 385 113 19 1
..
.

· · · · · · · · · · · · · · · · · ·
. . .

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

As usual, we can find a recursive description of the entries of A:

• each label at level i−1 produces, among its sons, precisely one coloured

label at level i, and so:

ai,1 =
∑

r≥1

ai−1,r ;

• each label j ≥ 2 at level i is generated either by a label k ≥ j at level

i− 1 or by a coloured label k̄, with k ≥ j at level i− 1, which, in turn,

is generated by the label k − 1 at level i− 2, then:

ai,j =
∑

k≥j

ai−1,k +
∑

k≥j−1

ai−2,k for j ≥ 2 ; (2.1)

• it is easily seen that, in the above generating tree, the coloured label k̄

first appears at the odd level 2k− 3, whereas the label k first appears

at the even level 2k − 2, whence:

ai,j = 0 for j ≥ bi/2c+ 2 .
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The ECO construction of S(1− 23, 21− 3) shows that, if a permutation

has label k, then it ends with k, while if it has a coloured label k̄, then its

last entry is 1. Therefore, the entry ai,j is the number of permutations with

length i and ending with the element j.

Our next aim is to find the generating function for the sequences displayed

in the columns of the matrix A, which are the sequences enumerating the

permutations of S(1 − 23, 21 − 3) with last entry j = 1, 2, . . ., according

to their length. It is convenient to change a little bit the notation: from

now on, we will index the lines of A starting from 0 instead of 1. First of

all, we derive a simple recurrence for the entries of A: using (2.1), simple

calculations show that

an,k = an,k−1 − an−1,k−1 − an−2,k−2 , for k ≥ 2 , n ≥ 0 . (2.2)

Let Ck(x) be the generating function of the k-th column of A:

Ck(x) =
∑

n≥0

an,kx
n .

Using (2.2), we find the following recurrence relation for Ck(x):

Ck+2(x) = (1− x)Ck+1(x)− x2Ck(x), k ≥ 0 . (2.3)

From the succession rule Φ (or from the ECO construction for S(1−23, 21−
3)), it is easy to check that

C0(x) = M(x), C1(x) = M(x)− 1 ,

where

M(x) =
1− x−√1− 2x− 3x2

2x2

is the generating function of Motzkin numbers {Mn}n≥0. In order to find a

closed form for Ck(x), we define a linear operator L on the vector space V
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of formal power series of odd order. The set (Ck(x))k≥1 is a basis of V, so

L can be defined as follows:

L(Ck(x)) = Ck+1(x) for k ≥ 1. (2.4)

From (2.3) it is:

L2(Ck(x)) = (1− x)L(Ck(x))− x2Ck(x)

which is the same of

(L2 − (1− x)L + x2)Ck(x) = 0 .

Therefore the operator L2 − (1 − x)L + x2 must vanish on V. Solving the

equation L2 − (1− x)L + x2 = 0, leads to

L =
1− x−√1− 2x− 3x2

2
= x2M(x) .

Now, from (2.4), we obtain the desired closed form for Ck(x):

Ck(x) = x2M(x)Ck−1(x) = · · · = x2(k−1)Mk−1(x)(M(x)− 1), k ≥ 1 .
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symmetry class avoided patterns enumerating sequence

N1 {1-23,2-13,3-12}
N2 {1-23,2-13,31-2}
N3 {1-23,21-3,3-12}
N4 {1-23,21-3,31-2}
N5 {12-3,3-12,2-13}
N6 {12-3,3-12,21-3}
N7 {12-3,31-2,2-13}
N8 {12-3,31-2,21-3}
N9 {1-23,2-13,2-31}
N10 {1-23,2-13,23-1}
N11 {1-23,21-3,2-31}
N12 {1-23,21-3,23-1}
N13 {2-13,2-31,1-32} {n}n≥1

N14 {2-13,23-1,1-32}
N15 {2-13,2-31,13-2}
N16 {2-13,23-1,13-2}
N17 {2-31,21-3,13-2}
N18 {2-31,21-3,1-32}
N19 {13-2,21-3,23-1}
N20 {21-3,23-1,1-32}
N21 {1-23,2-31,31-2}
N22 {1-23,23-1,31-2}
N23 {1-23,2-31,3-12}
N24 {1-23,1-32,3-21}
A1 {1-23,12-3,23-1}
A2 {2-31,23-1,1-32}
A3 {2-31,23-1,13-2}
A4 {1-23,12-3,2-13}
A5 {1-23,2-13,21-3} {2n−1}n≥1

A6 {1-23,3-12,31-2}
A7 {31-2,3-12,13-2}
A8 {31-2,3-12,1-32}
A9 {2-13,21-3,1-32}
A10 {2-13,21-3,13-2}
A11 {1-23,23-1,3-12} {2n− 2 + 1}n≥1

Table 2.1 Permutations avoiding three patterns
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symmetry class avoided patterns enumerating sequence

F1 {1− 23, 2− 13, 1− 32}
F2 {1− 23, 2− 13, 13− 2}
F3 {1− 23, 21− 3, 13− 2}
F4 {1− 23, 13− 2, 3− 12} {Fn}n≥1

F5 {1− 23, 1− 32, 3− 12}
F6 {1− 23, 1− 32, 31− 2}
F7 {1− 23, 13− 2, 31− 2}
M1 {1− 23, 12− 3, 21− 3}
M2 {12− 3, 21− 3, 2− 13} {Mn}n≥1

B1 {1− 23, 21− 3, 1− 32} {( n
dn/2e

)}n≥1

B2 {12− 3, 1− 23, 31− 2}
B3 {1− 23, 2− 31, 23− 1} {1 +

(
n
2

)}
C8 {12− 3, 2− 13, 32− 1} {3}n≥3

C1 {1− 23, 2− 13, 3− 21}
C2 {1− 23, 23− 1, 32− 1}
C3 {1− 23, 2− 13, 32− 1}
C4 {1− 23, 12− 3, 3− 21} {0}n≥k

C5 {1− 23, 21− 3, 3− 21}
C6 {1− 23, 21− 3, 32− 1}
C7 {1− 23, 2− 31, 32− 1}

Table 2.2 Permutations avoiding three patterns
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Enumerating sequence: {n}n≥1

name avoided patterns apply Proposition to the symmetry class

d1 {1− 23, 2− 13, 3− 12, 21− 3} 2.1.1 N1

d2 {1− 23, 2− 13, 31− 2, 21− 3} 2.1.1 N2

d3 {1− 23, 2− 13, 31− 2, 3− 12} 2.1.2 N2

d4 {1− 23, 21− 3, 31− 2, 3− 12} 2.1.2 N4

d5 {12− 3, 3− 12, 2− 13, 21− 3} 2.1.1 N5

d6 {12− 3, 31− 2, 2− 13, 21− 3} 2.1.1 N7

d7 {12− 3, 31− 2, 2− 13, 3− 12} 2.1.2 N7

d8 {12− 3, 31− 2, 21− 3, 3− 12} 2.1.2 N8

d9 {1− 23, 2− 13, 2− 31, 21− 3} 2.1.1 N9

d10 {1− 23, 2− 13, 2− 31, 23− 1} 2.1.3 N9

d11 {1− 23, 2− 13, 23− 1, 21− 3} 2.1.1 N10

d12 {1− 23, 21− 3, 2− 31, 23− 1} 2.1.3 N11

d13 {2− 13, 2− 31, 1− 32, 21− 3} 2.1.1 N13

d14 {2− 13, 2− 31, 1− 32, 23− 1} 2.1.3 N13

d15 {2− 13, 23− 1, 1− 32, 21− 3} 2.1.1 N14

d16 {2− 13, 2− 31, 13− 2, 21− 3} 2.1.1 N15

d17 {2− 13, 2− 31, 13− 2, 23− 1} 2.1.3 N15

d18 {2− 13, 2− 31, 13− 2, 1− 32} 2.1.4 N15

d19 {2− 13, 23− 1, 13− 2, 21− 3} 2.1.1 N16

d20 {2− 13, 23− 1, 13− 2, 1− 32} 2.1.4 N16

d21 {2− 31, 21− 3, 13− 2, 23− 1} 2.1.3 N17

d22 {2− 31, 21− 3, 13− 2, 1− 32} 2.1.4 N17

d23 {2− 31, 21− 3, 1− 32, 23− 1} 2.1.3 N18

d24 {13− 2, 21− 3, 23− 1, 1− 32} 2.1.4 N19

d25 {1− 23, 2− 31, 31− 2, 23− 1} 2.1.3 N21

d26 {1− 23, 2− 31, 31− 2, 3− 12} 2.1.2 N21

d27 {1− 23, 23− 1, 31− 2, 3− 12} 2.1.2 N22

d28 {1− 23, 2− 31, 3− 12, 23− 1} 2.1.3 N23

d29 {1− 23, 2− 13, 31− 2, 12− 3} 2.1.5 N2

d30 {1− 23, 2− 13, 3− 12, 12− 3} 2.1.5 N1

d31 {1− 23, 2− 13, 2− 31, 12− 3} 2.1.5 N9

d32 {1− 23, 2− 13, 23− 1, 12− 3} 2.1.5 N10

d33 {1− 23, 21− 3, 2− 31, 12− 3} 2.1.6 N11

d34 {1− 23, 21− 3, 23− 1, 12− 3} 2.1.6 N12

d35 {1− 23, 21− 3, 31− 2, 12− 3} 2.1.6 N4

d36 {1− 23, 21− 3, 3− 12, 12− 3} 2.1.6 N3

d37 {1− 23, 2− 31, 3− 12, 12− 3} 2.1.7 N23

d38 {1− 23, 2− 31, 31− 2, 12− 3} 2.1.7 N21

Table 2.3 Permutations avoiding four patterns
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Enumerating sequence: {Fn}n≥1

name avoided patterns apply Proposition to the symmetry class

e1 {1− 23, 2− 13, 1− 32, 21− 3} 2.1.1 F1

e2 {1− 23, 2− 13, 1− 32, 12− 3} 2.1.5 F1

e3 {1− 23, 2− 13, 13− 2, 21− 3} 2.1.1 F2

e4 {1− 23, 2− 13, 13− 2, 1− 32} 2.1.4 F2

e5 {1− 23, 2− 13, 13− 2, 12− 3} 2.1.5 F2

e6 {1− 23, 21− 3, 13− 2, 1− 32} 2.1.4 F3

e7 {1− 23, 13− 2, 3− 12, 1− 32} 2.1.4 F4

e8 {1− 23, 1− 32, 31− 2, 3− 12} 2.1.2 F6

e9 {1− 23, 13− 2, 31− 2, 1− 32} 2.1.4 F7

e10 {1− 23, 13− 2, 31− 2, 3− 12} 2.1.2 F7

Table 2.4 Permutations avoiding four patterns

Enumerating sequence: {2n−1}n≥1

avoided patterns apply Proposition to the symmetry class

{1− 23, 12− 3, 2− 13, 21− 3} 2.1.1 A4

{31− 2, 3− 12, 13− 2, 1− 32} 2.1.4 A7

{2− 13, 21− 3, 13− 2, 1− 32} 2.1.4 A10

{2− 31, 23− 1, 1− 32, 13− 2} 2.1.4 A3

Table 2.5 Permutations avoiding four patterns
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Enumerating sequence: {0}n≥k

name choose a pattern from the following to add to the symmetry class

O1 12− 3

O2 1− 32

O3 13− 2

O4 3− 12

O5 31− 2 {1− 23, 2− 13, 3− 21} (C1)

O6 21− 3

O7 2− 31

O8 23− 1

O9 32− 1

O10 12− 3

O11 1− 32

O12 13− 2

O13 3− 12

O14 31− 2 {1− 23, 23− 1, 32− 1} (C2)

O15 2− 13

O16 21− 3

O17 2− 31

O18 3− 21

O19 12− 3

O20 13− 2

O21 3− 12

O22 31− 2 {1− 23, 2− 13, 32− 1} (C3)

O23 21− 3

O24 2− 31

O25 31− 2

O26 1− 32

O27 23− 1 {1− 23, 12− 3, 3− 21} (C4)

O28 32− 1

O29 1− 32

O30 13− 2

O31 3− 12 {1− 23, 21− 3, 3− 21} (C5)

O32 31− 2

O33 23− 1

O34 13− 2

O35 3− 12 {1− 23, 21− 3, 32− 1} (C6)

O36 2− 31

O37 13− 2 {1− 23, 2− 31, 32− 1} (C7)

Table 2.6 Permutations avoiding four patterns
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Enumerating sequence: {2}n≥2

1st pattern 2nd pattern 3rd pattern 4th pattern

1− 23
2− 31 or

23− 1

1− 32 or

13− 2

3− 12 or

31− 2

1− 23
2− 13 or

21− 3

1− 32 or

13− 2

3− 12 or

31− 2

2− 13 or

21− 3

2− 31 or

23− 1

1− 32 or

13− 2

3− 12 or

31− 2

12− 3
2− 13 or

21− 3

2− 31 or

23− 1
32− 1

1− 23
2− 13 or

21− 3

2− 31 or

23− 1

3− 12 or

31− 2

1− 23
2− 13 or

21− 3

2− 31 or

23− 1

1− 32 or

13− 2

Table 2.7 Permutations avoiding four patterns
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Enumerating sequence: {0}n≥k

choose a pattern from the following to add to the symmetry class

21− 3, 2− 31, 23− 1, 1− 32, 13− 2,

3− 12, 31− 2, 32− 1
O1

2− 31, 23− 1, 1− 32, 13− 2, 3− 12,

31− 2
O6

21− 3, 2− 31, 23− 1, 1− 32, 3− 12,

31− 2
O19

2− 31, 23− 1, 1− 32, 13− 2, 3− 12

31− 2
O23

1− 32, 13− 2, 3− 12, 31− 2, 32− 1 O8

23− 1, 1− 32, 13− 2, 31− 2, 3− 12 O24

12− 3, 32− 1, 13− 2, 3− 12, 31− 2 O29

3− 12, 13− 2, 1− 32, 23− 1, 12− 3 O36

1− 32, 13− 2, 3− 12, 31− 2 O15

13− 2, 3− 12, 31− 2 O2

1− 32, 2− 31, 31− 2 O10

12− 3, 13− 2, 3− 12 O32

1− 32, 13− 2, 32− 1 O33

3− 21, 23− 1, 1− 32 O34

3− 12, 31− 2 O3

1− 32, 13− 2 O7

13− 2, 3− 12 O9

21− 3, 13− 2 O11

1− 32, 3− 12 O20

3− 12, 23− 1 O26

2− 31, 32− 1 O27

3− 12 O5

2− 31 O12

1− 32 O21

3− 12 O30

23− 1 O35

Table 2.8 Permutations avoiding five patterns
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Enumerating sequence: {2}n≥k

thanks to Proposition add the pattern to the patterns

2.1.1 21− 3

{1− 23, 2− 13, 1− 32, 3− 12} or

{1− 23, 2− 13, 1− 32, 31− 2} or

{1− 23, 2− 13, 13− 2, 3− 12} or

{1− 23, 2− 13, 1− 32, 31− 2}

2.1.1 21− 3

{1− 23, 2− 13, 2− 31, 1− 32} or

{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 23− 1, 1− 32} or

{1− 23, 2− 13, 23− 1, 13− 2}

2.1.1 21− 3

{1− 23, 2− 13, 2− 31, 3− 12} or

{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 3− 12} or

{1− 23, 2− 13, 23− 1, 31− 2}

2.1.1 21− 3
{1− 23, 2− 13, 23− 1, 32− 1} or

{1− 23, 2− 13, 2− 31, 32− 1}

2.1.1 21− 3

{2− 13, 2− 31, 1− 32, 3− 12} or

{2− 13, 2− 31, 1− 32, 31− 2} or

{2− 13, 2− 31, 13− 2, 31− 2}

2.1.1 21− 3

{2− 13, 23− 1, 1− 32, 31− 2} or

{2− 13, 23− 1, 1− 32, 3− 12} or

{2− 13, 23− 1, 13− 2, 31− 2} or

{2− 13, 23− 1, 13− 2, 3− 12}

2.1.2 3− 12
{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 31− 2}

2.1.2 3− 12
{1− 23, 2− 13, 1− 32, 31− 2} or

{1− 23, 2− 13, 13− 2, 31− 2}

2.1.2 3− 12
{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 31− 2}

2.1.2 3− 12
{1− 23, 21− 3, 1− 32, 31− 2} or

{1− 23, 21− 3, 13− 2, 31− 2}

2.1.2 3− 12
{1− 23, 2− 31, 1− 32, 31− 2} or

{1− 23, 2− 31, 13− 2, 31− 2}

2.1.2 3− 12
{1− 23, 23− 1, 1− 32, 31− 2} or

{1− 23, 23− 1, 13− 2, 31− 2}
2.1.3 23− 1 {2− 13, 2− 31, 1− 32, 31− 2}

2.1.3 23− 1
{1− 23, 2− 31, 13− 2, 3− 12} or

{1− 23, 2− 31, 13− 2, 31− 2}

Table 2.9 Permutations avoiding five patterns
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Enumerating sequence: {2}n≥k

thanks to Proposition add the pattern to the patterns

2.1.3 23− 1
{1− 23, 2− 31, 1− 32, 3− 12} or

{1− 23, 2− 31, 1− 32, 31− 2}

2.1.3 23− 1

{1− 23, 21− 3, 2− 31, 1− 32} or

{1− 23, 21− 3, 2− 31, 13− 2} or

{1− 23, 21− 3, 2− 31, 3− 12} or

{1− 23, 21− 3, 2− 31, 31− 2}

2.1.3 23− 1

{1− 23, 2− 13, 2− 31, 1− 32} or

{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 2− 31, 3− 12} or

{1− 23, 2− 13, 2− 31, 31− 2}

2.1.4 1− 32
{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 23− 1, 13− 2}

2.1.4 1− 32
{1− 23, 2− 13, 13− 2, 3− 12} or

{1− 23, 2− 13, 13− 2, 31− 2}

2.1.4 1− 32
{1− 23, 21− 3, 2− 31, 13− 2} or

{1− 23, 21− 3, 23− 1, 13− 2}

2.1.4 1− 32
{1− 23, 21− 3, 13− 2, 3− 12} or

{1− 23, 21− 3, 13− 2, 31− 2}

2.1.4 1− 32
{1− 23, 2− 31, 13− 2, 3− 12} or

{1− 23, 2− 31, 13− 2, 31− 2}

2.1.4 1− 32
{1− 23, 23− 1, 13− 2, 3− 12} or

{1− 23, 23− 1, 13− 2, 31− 2}

2.1.5 12− 3

{1− 23, 2− 13, 2− 31, 1− 32} or

{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 23− 1, 1− 32} or

{1− 23, 2− 13, 23− 1, 13− 2}

2.1.5 12− 3

{1− 23, 2− 13, 2− 31, 3− 12} or

{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 3− 12} or

{1− 23, 2− 13, 23− 1, 31− 2}

2.1.5 12− 3
{1− 23, 2− 13, 1− 32, 3− 12} or

{1− 23, 2− 13, 1− 32, 31− 2}

2.1.6 12− 3
{1− 23, 21− 3, 23− 1, 3− 12} or

{1− 23, 21− 3, 23− 1, 31− 2}

2.1.6 12− 3
{1− 23, 21− 3, 2− 31, 1− 32} or

{1− 23, 21− 3, 23− 1, 1− 32}

2.1.6 12− 3
{1− 23, 21− 3, 2− 31, 3− 12} or

{1− 23, 21− 3, 2− 31, 31− 2}

Table 2.10 Permutations avoiding five patterns
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Enumerating sequence: {n}n≥1

thanks to Proposition add the pattern to the representative

2.1.2 3− 12 d2

2.1.3 23− 1 d9

2.1.2 3− 12 d6

2.1.2 3− 12 d25

2.1.1 21− 3 d14

2.1.1 21− 3 d17

2.1.4 1− 32 d16

2.1.1 21− 3 d20

2.1.3 23− 1 d18

2.1.4 1− 32 d21

2.1.5 12− 3 d9

2.1.5 12− 3 d11

2.1.5 12− 3 d1

2.1.5 12− 3 d2

2.1.5 12− 3 d10

2.1.5 12− 3 d3

2.1.6 12− 3 d12

2.1.6 12− 3 d4

2.1.7 12− 3 d28

2.1.7 12− 3 d25

Table 2.11 Permutations avoiding five patterns
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Enumerating

sequence
avoided patterns apply Proposition to the symmetry class

{1 +
�n
2

�}n≥1 {12− 3, 1− 23, 31− 2, 3− 12} 2.1.2 B2

{� n
dn/2e

�}n≥1 {1− 23, 21− 3, 1− 32, 12− 3} 2.1.6 B1

{2n−2 + 1}n≥1 {1− 23, 23− 1, 3− 12, 12− 3} 2.1.8 A11

{3}n≥3 {12− 3, 2− 13, 32− 1, 21− 3} 2.1.1 C8

Table 2.12 Permutations avoiding four patterns

Enumerating sequence: {Fn}n≥1

thanks to Proposition add the pattern to the representative

2.1.5 12− 3 e1

2.1.5 12− 3 e3

2.1.1 21− 3 e4

2.1.3 1− 32 e10

Table 2.13 Permutations avoiding five patterns





Chapter 3

A discrete continuity: from

Fibonacci to Catalan

Fibonacci and Catalan numbers are very well known sequences. They ap-

pear in many combinatorial problems as they enumerate a great quantity of

combinatorial objects. For instance, Fibonacci numbers are involved in the

tiling of a strip, in rabbits’ population growth, in bees’ ancestors, . . . , while

Catalan numbers occur in the enumeration of several kinds of paths, trees,

permutations, polyominoes and other combinatorial structures. Fibonacci

numbers are described by the famous recurrence:





F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2

from which the generating function:

F (x) =
1

1− x− x2

arises, and the sequence begins with 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .. Catalan
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numbers have been deeply studied, too: they appear in many relations, also

connected to other sequences or by themselves. They are defined by:




C0 = 1

C1 = 1

Cn =
∑n−1

i=0 Cn−1−iCi

The expression

Cn =
1

n + 1

(
2n

n

)
, with n ≥ 0,

derived from the generating function

C(x) =
1 +

√
1− 4x

2x
,

is a closed formula for them and the sequence begins with the numbers

1, 1, 2, 5, 14, 42, 132, . . ..

Our question is: “What is there between Fibonacci and Catalan num-

bers?” For instance the following sequences:

• {cn}n≥0 = {1, 1, 2, 4, 7, 13, 24, . . .}, (c0 = 1, c1 = 1, c2 = 2, cn = cn−1 +

cn−2 + cn−3) Tribonacci numbers;

• {tn}n≥0 = {1, 1, 2, 4, 8, 16, 32, . . . , 2n−1}, (t0 = 1, tn = 2n−1);

• {pn}n≥0 = {1, 1, 2, 5, 12, 29, 70, . . .}, (p0 = 1, p1 = 1, p2 = 2, pn =

2pn−1 + pn−2) Pell numbers;

• {F̄n}n≥0 = {1, 1, 2, 5, 13, 34, 89, . . .}, (F̄0 = 1, F̄1 = 1, F̄n = 3F̄n−1 +

F̄n−2) even index Fibonacci numbers,

(for more details see the sequences M1074, M1129, M1413, M1439 in [Sl],

respectively, where they are defined with different initial conditions)
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lay between Fibonacci and Catalan numbers (we call the last sequence even

index Fibonacci numbers while other authors call them odd index Fibonacci

numbers, but this depends on the initials conditions assumed for the Fi-

bonacci sequence). We are looking for a unifying combinatorial interpreta-

tion for all these sequences, and others too. To this aim we will use per-

mutations avoiding forbidden subsequences. The forbidden patterns used in

this chapter are not generalized patterns.

The main idea we are going to base on, has already been used in [BDPP1]

and [BDPP3]. Here, here we briefly recall that. It is well known that

|Sn(123, 213, 312)| = Fn and |Sn(123)| = Cn, as mentioned in the abstract.

The patterns 213 and 312, which are not present in the second equality, can

be seen as particular cases of more general patterns. More precisely, 213

can be obtained from the pattern rk = k(k − 1)(k − 2) . . . 21(k + 1) with

k = 2, while 312 is the pattern qk = 1(k + 1)k(k − 1) . . . 21 with k = 2,

again. When k grows, the patterns rk and qk increase their length, then in

the limit (k grows to ∞) they can be not considered in the enumeration of

the permutations π of Sn(123, rk, qk) since, for each n ≥ 0, any π does not

surely contain a pattern of infinite length. In other words, starting from

the case k = 2 (involving Fibonacci numbers), for each k > 2 we provide

a class of pattern avoiding permutations where the pattern are suitably

generalized in order to make them “disappear” when k grows, leading to

the class S(123) enumerated by the Catalan numbers. We say that there

is a sort of “continuity” between Fibonacci and Catalan numbers since we

provide a succession of generating functions {gk(x)}k≥2 with g2(x) = F (x)

and whose limit is C(x).

As a matter of fact, in this chapter this aim is reached in two steps: first

only the pattern 312 is generalized so that we arrive to the class S(123, 213)

enumerated by {2n−1}, then the pattern 213 is increased in order to obtain

the class S(123). Nevertheless it is possible to make “disappear” both the
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patterns at the same time obtaining similar results.

As mentioned above, the forbidden patterns used in this chapter are not

generalized patterns. Nevertheless, we think that the approach we are going

to use could produce similar results about a continuity between different

remarkable (or not) sequences.

3.1 Preliminaries

Permutations avoiding forbidden subsequences have been widely studied by

many authors [BK, BDPP2, BDPP5, Che, Chu, EM1, Gi, Gu, Kra, Krem,

SS, St, W1, W2, W4]. A very efficient and natural method to enumerate

classes of permutations was proposed by Chung et al. [Chu] and Rogers

[Ro], and, later, by West [W1]. It consists in generating permutations in Sn

from permutations in Sn−1 by inserting n in all the positions such that a

forbidden subsequence does not arise (we denote these positions by a ‘¦’).
These positions are the active sites, while a site is any position between two

consecutive elements in a permutation or the position before the first element

or after the last one. If a permutation in Sn−1(Γ1, . . . ,Γj), where Γi’s are

forbidden patterns, contains k active sites, then it generates k permutations

in Sn(Γ1, . . . ,Γj). In the sequel, we denote the i-th active site as the site

located before πi.

In order to show how we can enumerate classes of permutations by this

method, we consider the class Sn(123). Let π = π1π2 · · ·πn be a permutation

in Sn(123) such that π1 > π2 > · · · > πk−1 < πk. Then the first k sites are

active, since the insertion of n+1 in one of these positions does not create a

subsequence of kind 123. On the contrary, the sites on the right of πk are not

active because the insertion of n+1 produces the subsequence πk−1πk(n+1)

which is of kind 123. Therefore, from the permutation

¦π1 ¦ π2 ¦ · · · ¦ πk−1 ¦ πkπk+1 · · ·πn
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we obtain the following ones:

¦(n + 1)π1 ¦ π2 ¦ · · · ¦ πk−1 ¦ πkπk+1 · · ·πn

¦π1 ¦ (n + 1)π2 · · · · · ·πn

¦π1 ¦ π2 ¦ (n + 1)π3 · · ·πn

...

¦π1 ¦ π2 ¦ · · · ¦ πk−1 ¦ (n + 1)πk · · ·πn

which have respectively (k+1), 2, 3, . . . , k active sites. We remark that from

a permutation π having k active sites we obtain k permutations having (k +

1), 2, 3, . . . , k active sites, independently from the length of the permutation.

Such a permutation is labelled with (k). We can “condense” this property

into the succession rule:



(1)

(1) Ã (2)

(k) Ã (2)(3) · · · (k)(k + 1) .

(3.1)

The label (1), the axiom of the succession rule, is the number of active sites

of the empty permutation ε which is the only permutation with length n = 0,

meaning that ε generates the minimal permutation π = 1 with length n = 1.

In turn, π = ¦1¦ has two active sites, then it produces two permutations:

this fact is described by the second line of the rule (1) Ã (2) (the production

of the axiom).

Usually, from a succession rule we can obtain a functional equation or

a system of equations from which one can obtain the generating function

f(x) =
∑

n≥0 anxn where an is the number of objects on level n. From the

above example for S(123), it is possible to obtain (we omit the calculus)

the generating function C(x) for Catalan numbers. Moreover, |Sn(123)| =

Cn, for n ≥ 0.

The enumeration of the permutations of Sn(123, 132, 213) is also briefly

illustrated, which is the starting point of our argument. In the permutations
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of this class only the first two sites can be active: the insertion of n + 1 in

another site would produce the subsequence π1π2(n + 1) which is of kind

123 or 213. If π1 < π2 then only the first site is active because the insertion

of n+1 in the second site would produce the subsequence π1π2(n+1) which

is of kind 132. Let π = π1π2 · · ·πn be a permutation in Sn(123, 132, 213); if

π1 < π2, from ¦π1π2 · · ·πn we obtain ¦(n + 1) ¦ π1π2 · · ·πn which has two

active sites; if π1 > π2, from ¦π1 ¦ π2 · · ·πn we obtain ¦(n + 1) ¦ π1π2 · · ·πn

and ¦π1(n + 1)π2 · · ·πn having two and one active sites, respectively. This

construction can be encoded by the succession rule:




(1)

(1) Ã (2)

(2) Ã (1)(2)

(3.2)

The above succession rule is an example of finite succession rule since only a

limited number of different labels appear in it. It is easily seen that it leads

to Fibonacci numbers and |Sn(123, 213, 312)| = Fn, for n ≥ 0.

In the last part of this section, we only note that the permutations

of the class S(123, 213), which is the intermediate step between the above

considered classes (see the Introduction), have exactly two active sites (the

first two sites), so that the corresponding succession rule is




(1)

(1) Ã (2)

(2) Ã (2)(2)

(3.3)

It is easy to prove that the related enumerating sequence {tn}n≥0 is defined

by 



t0 = 1

tn = 2n−1, n ≥ 1

and |Sn(123, 213)| = tn. The corresponding generating function is t(x) =
1−x
1−2x . In the sequel, we refer to this sequence simply with {2n−1}n≥0.
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We conclude by observing that all the considered sequences take into

account the empty permutation which is enumerated by C0, F0 and t0.

Moreover, in each presented succession rule the axiom refers to it and the

production (1) Ã (2) describes its behavior.

3.2 From Fibonacci to 2n−1

Consider a permutation π ∈ Sn(123, 213, 1(k + 1)k . . . 2). His structure is

essentially known thanks to [EM], where the authors analyze the permuta-

tions of Sn(123, 132, k(k−1) . . . 21(k+1)) which is equivalent to the class we

are considering (the permutations of the former are the reverse complement

of the latter). In the same paper the authors show that those permutations

are enumerated by the sequence of k-generalized Fibonacci numbers, pro-

viding also the related generating function. Here, we give an alternative

proof of the same facts by using the ECO method [BDPP1]. To this aim,

we recall the structure of the permutations referring directly to the class

Sn(123, 213, 1(k + 1)k . . . 2), nevertheless we omit the easy proofs that one

can recover from [EM].

If π ∈ Sn(123, 213, 1(k + 1)k . . . 2), then:

• either π1 = n or π2 = n;

• if π1 = n, then π = nτ , with τ ∈ Sn−1(123, 213, 1(k + 1)k . . . 2);

• if π2 = n, then π1 = n − j, with j ∈ {1, 2, . . . , k − 1}, and π =

(n−j)n(n−1) . . . (n−j+1)σ, with σ ∈ Sn−j−2(123, 213, 1(k+1)k . . . 2).

If π ∈ Sn(123, 213, 1(k+1)k . . . 2), denote π(i) the permutations such that

π1 = n−i. The active sites of π are the first two sites: the insertion of n+1 in

any other site would create the forbidden pattern 123 or 213. More precisely,

the permutations π(j) with j ∈ {0, 1, 2, . . . , k−2} have label (2) (the first two

sites are active), while π(k−1) has label (1) (the first site is active). The son of
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the permutation π(k−1) is the permutation of Sn+1(123, 213, 1(k + 1)k . . . 2)

obtained from π by inserting n + 1 in its first active site, which we denote

π̄(0). It is easily seen that π̄(0) has, in turn, label (2). The two sons of the

permutations with label (2) are π̄(0) and π̄(j+1) (π̄(j+1) is obtained from π by

inserting n + 1 in the second active site). Therefore, all these permutations

have, in turn, label (2) but π̄(k−1) which has label (1). Since all the labels

(2) have not the same production, it is suitable to label each permutation

π(j) (j ∈ {0, 1, 2, . . . , k−2}) with (2j) in order to recognize the permutation

π(k−2) whose sons have labels (1) and (2). Then, the above description can

be encoded by:




(1)

(1) Ã (20)

(2j) Ã (20)(2j+1), for j = 0, 1, 2, . . . , k − 3

(2k−2) Ã (20)(1)

We now deduce the generating function T (k)(x, y) of the permutations of

S(123, 213, 1(k + 1)k . . . 2), according to their length and number of active

sites. To this aim we consider the subsets T1 of the permutations with

label (1) and T2j , with j = 0, 1, 2, . . . , k − 2, of the permutations with label

(2j). It is obvious that these subsets form a partition of S(123, 213, 1(k +

1)k . . . 2). Denote with T1(x, y) =
∑

π∈T1
xn(π)yf(π) the generating function

of T1 and T2j (x, y) =
∑

π∈T2j
xn(π)yf(π) the generating function of T2j (j =

0, 1, . . . , k−2), where n(π) and f(π) are the length and the number of active

sites of a permutation π, respectively. From the above succession rule the

following system is derived:
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



T1(x, y) = y + xy
∑

π∈T2k−2
xn(π)

T20(x, y) = xy2(T1(x, 1) +
∑k−2

i=0 T2i(x, 1))

T2j (x, y) = xy2T2j−1(x, 1), j = 1, 2, . . . , k − 2 .

Clearly, it is T (k)(x, y) = T1(x, y) +
∑k−2

j=0 T2j (x, y) and, if y = 1, T (k)(x, 1)

is the generating function of the permutations of S(123, 213, 1(k + 1)k . . . 2)

according to their length. From the above system (we omit the calculus), it

follows:

T (k)(x, 1) =
1− x

1− 2x + xk+1
.

Note that if k grows to ∞, the generating function t(x) related to the se-

quence {2n−1}n≥0 (enumerating the permutations of S(123, 213), see Section

4.1.1) is obtained. For each k ≥ 2, we get an expression which is the generat-

ing function of the k-generalized Fibonacci numbers. For k = 1, the formula

leads to 1
1−x which is the generating function of the sequence {1}n≥0 enu-

merating the permutations of Sn(123, 213, 12) = Sn(12) = n (n− 1) . . . 2 1.

For k = 3 the succession is




(1)

(1) Ã (20)

(20) Ã (20)(21)

(21) Ã (20)(1) ,

which defines the Tribonacci numbers, whose generatring function is T (3)(x, 1) =
1

1−x−x2−x3 .

3.3 From 2n−1 to Catalan

Let π be a permutation of Sn(123, k(k − 1) . . . 21(k + 1)). Then if πi = n

it is i ∈ {1, 2, . . . , k}, otherwise if πj = n with j ≥ k + 1, it should be
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π1 > π2 > . . . > πk in order to avoid the pattern 123. But in this way

the entries π1, π2, . . . , πk, πj are a pattern k(k − 1) . . . 21(k + 1) which is

forbidden.

If απ denotes the minimum index j such that πj−1 < πj , we can describe

the active sites of π by using απ.

1. If απ = j ≤ k, then the active sites are the first j sites of π. The

insertion of n + 1 in any other site would create the pattern 123. In

this case π as label (j).

2. If απ > k, then the active sites of π are the first k sites since the

insertion of n + 1 in any other site would lead to the occurrence of

the forbidden patterns k(k− 1) . . . 21(k + 1) or 123. In this case π has

label (k).

In order to describe the labels of the sons of π, in the sequel we denote π̄(i)

the permutation π̄ ∈ Sn+1(123, k(k − 1) . . . 21(k + 1)) obtained from π by

inserting n + 1 in the i-th active site of π.

1. If π has label (k), it is not difficult to see that απ̄(1) = απ +1 > k, then

π̄(1) has label (k) again. While, if we consider π̄(i), with i = 2, 3, . . . , k,

then απ̄(i) = i and π̄(i) has label (i). Therefore the production of the

label (k) is (k) Ã (2)(3) . . . (k)(k).

2. If π has label (j) with j ∈ {2, 3, . . . , k − 1}, then it is easily seen

that απ̄(1) = απ + 1 ≤ k and π̄(1) has label (j + 1) (note that in this

case απ = j). While if we consider π̄(i), with i = 2, 3, . . . , j, then

απ̄(i) = i and π̄(i) has label (i). Therefore the production of (j) is

(j) Ã (2)(3) . . . (j)(j + 1).
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The above construction can be encoded by the succession rule:




(1)

(1) Ã (2)

(j) Ã (2)(3) . . . (j)(j + 1), for j = 2, 3, . . . , k − 1

(k) Ã (2)(3) . . . (k)(k) ,

where the axiom and its production refer to the empty permutation gener-

ating the permutation π = 1, which, in turn, produces two sons: π = 12

and π = 21. Using the theory developed in [DFR1], the production matrix

related to the above succession rule is

Pk =




0 1 0 · · · · · · · · · · · ·
0 1 1 0 · · · · · · · · ·
0 1 1 1 0 · · · · · ·
...

...
...

...
. . .

...
...

...
...

. . .

0 1 1 1 1 · · · 1

0 1 1 1 1 · · · 2




,

with k rows and columns. For each k ≥ 2, it is easy to see that the matrix

Pk can be obtained from Pk−1 as follows:

Pk =


 0 uT

0 Pk−1 + euT


 ,

where uT is the row vector (1, 0, . . . , 0) and e is the column vector (1, 1, . . . , 1)T

(both k − 1-dimensional). If fPk
(x) is the generating function according to

the length of the permutations associated to Pk, from a result in [DFR1]

(more precisely Proposition 3.10), the following functional equation holds:

fPk
(x) =

1
1− xfPk−1

(x)
.
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In the limit, we have f(x) = 1
1−xf(x) which is the functional equation

verified by the generating function of the Catalan numbers C(x).

As a particular case, it is possible to check that for k = 3, the sequence of

the even index Fibonacci numbers is involved. The obtained succession rule

is 



(1)

(1) Ã (2)

(2) Ã (2)(3)

(3) Ã (2)(3)(3) ,

leading to the related generating function F̄ (x) = 1−2x
1−3x+x2 .

3.4 Another way for achieving the same goal

In Section 3.2, starting from S(123, 213, 132) and using the knowledge that

S(123, 213) is enumerated by {2n−1}n≥0, the pattern 132 has been gener-

alized in 1(k + 1)k . . . 2, in order to make it “disappear”. Since the class

S(123, 132) is enumerated by {2n−1}n≥0, too, one can choose the pattern

213 instead of 132 (among the forbidden patterns of the permutations of

S(123, 213, 132)) as the one to be generalized. Indeed, there is no a partic-

ular reason why we chose the pattern 132 to make it disappear.

Similarly, starting from S(123, 132) and recalling that |Sn(p)| = Cn ∀ p ∈
S3, either the pattern 123 or the pattern 132 can be generalized in order to

find a class enumerated by the Catalan numbers.

The difference between a choice with respect to another one lies in the

fact that different ECO construction for the permutations are expected.

Therefore, different succession rules for the same sequence could be found.
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3.4.1 From Fibonacci to 2n−1

Starting from S(123, 213, 132), here we generalize the pattern 213 consid-

ering the class S(123, 132, k(k − 1) . . . 21(k + 1)), for k ≥ 3. This class has

already been described in [EM], where the author provides the structure of

its permutations. From his results, it is possible to deduce the following

succession rule (similarly to Section 3.2, the details are omitted), encoding

the construction of those permutations:




(1)

(1) Ã (2)

(h) Ã (1)h−1(h + 1) for h < k

(k) Ã (1)k−1(k)

In [EM] the author shows also that the k-generalized Fibonacci numbers are

the enumerating sequence of the permutations of S(123, 132, k(k−1) . . . 21(k+

1)). This fact can be derived also by solving the system that can be obtained

from the above succession rule, with a technique similar to that one used in

Section 3.2 leading to the same generating function T k(x, 1) = 1−x
1−2x+xk+1 .

This agrees with the fact that in the limit for k → ∞, the class to be

considered is S(123, 132), enumerated by {2n−1}n≥0 [SS]. We note that it

is possible to describe the permutations of S(123, 132) with the succession

rule 



(1)

(1) Ã (2)

(h) Ã (1)h−1(h + 1) ,

from which one can get that the related generating function is, again, t(x) =
1−x
1−2x .
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The particular case k = 3 is marked: the obtained succession rule is




(1)

(1) Ã (2)

(2) Ã (1)(3)

(3) Ã (1)(1)(3) .

corresponding to the sequence of Tribonacci numbers, as one can check by

deriving the related generating function T 3(x, 1) = 1
1−x−x2−x3 .

3.4.2 From 2n−1 to Catalan

Starting from S(123, 132), the pattern 132 is generalized in (k − 1)(k −
2) . . . 21(k + 1)k, with k ≥ 3. Moreover, the construction of the permuta-

tions of S(123, (k−1)(k−2) . . . 21(k+1)k) is described and the corresponding

succession rule is showed. Finally, we prove that the corresponding gener-

ating function is, in the limit for k → ∞, the generating function of the

Catalan numbers C(x).

Let π be a permutation of Sn(123, (k − 1)(k − 2) . . . 21(k + 1)k). We

denote:

• r = min{1, 2, . . . , n} such that πr−1 < πr;

• s = min{1, 2, . . . , n} and t = min{1, 2, . . . , n} such that, fore some

indexes m1 < m2 < . . . < mk−2 < s < t, it is πm1πm2 . . . πmk−2
πsπt '

(k − 1)(k − 2) . . . 21k (the two subsequences are order-isomorphic and

πs and πt correspond to the 1 and to the k of the pattern (k − 1)(k −
2) . . . 21k);

• απ = min{r, s};

• π̄(l) the permutation of Sn+1(123, (k−1)(k−2) . . . 21(k+1)k) obtained

from π by inserting n + 1 in the l-th site.
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We prove that π has απ active sites which are the first απ sites of π.

It is easily seen that that the insertion of n + 1 in any site among the

first απ sites of π, does not induce either the pattern 123 or the pattern

(k−1)(k−2) . . . 21(k+1)k. On the other hand, if απ = r, then the insertion

of n + 1 in the l-th site, l > απ, would create the pattern 123 in the entries

π̄
(l)
r−1π̄

(l)
r π̄

(l)
l . While, if απ = s, then the insertion of n + 1 in the i-th site,

απ + 1 ≤ i ≤ t, would create the pattern (k− 1)(k− 2) . . . 21(k + 1)k in the

entries π̄
(i)
m1 π̄

(i)
m2 . . . π̄

(i)
mk−2 π̄

(i)
απ π̄

(i)
i π̄

(i)
t+1 (recall that π̄

(i)
i = n+1 and π̄

(i)
t+1 = πt).

Finally, if i ≥ t + 1, the pattern 123 would appear in the entries π̄
(i)
απ π̄

(i)
t π̄

(i)
i .

Denote (h) the label of π, whit h = απ. In order to describe the labels of

the sons π̄(l), l = 1, 2, . . . , h, of π, we have:

1. If h < k (note that on this case απ = r or, if απ = s, then s =

k − 1), then the permutation π̄(1) = (n + 1)π1π2 . . . παπ . . . πk . . . πn,

so that απ̄(1) = απ + 1. Therefore π̄(1) has label (h + 1). While if we

consider the permutations π̄(j), j = 2, 3, . . . , h, it is απ̄(j) = j since

π̄
(j)
j−1 < π̄

(j)
j (= n + 1). So π̄(j) has label (j) and we conclude that the

production of (h) is (h) Ã (2)(3) . . . (h)(h + 1).

2. If h ≥ k, then π̄(1) = (n + 1)π1π2 . . . πk . . . παπ . . . πn, so that απ̄(1) =

απ + 1. Therefore π̄(1) has label (h + 1). Note that in both cases

απ = r or απ = s it is π1 > π2 > . . . > παπ−1. Then, if we consider

the permutations π̄(j), j = k, k + 1, . . . , απ, we obtain απ̄(j) = k − 1,

regardless of j, since π̄
(j)
1 π̄

(j)
2 . . . π̄

(j)
k−1π̄

(j)
j ' (k− 1)(k− 2) . . . 1k. Then

π̄(j) has label (k− 1), for j = k, k + 1, . . . , απ. For the remaining sons

π̄(j), j = 2, 3, . . . , k − 1, it is easily seen that π̄
(j)
j−1 < π̄

(j)
j (= n + 1).

So, π̄(j) has label (j). We conclude that, in this second case, the

production of (h) is (h) Ã (2)(3) . . . (k − 2)(k − 1)h−k+2(h + 1).

The above description of the generation of the permutations of S(123, (k −
1)(k−2) . . . 21(k+1)k) can be then encoded in the following succession rule
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Ωk:

Ωk =





(1)

(1) Ã (2)

(h) Ã (2) · · · (h)(h + 1) for h < k

(h) Ã (2) · · · (k − 2)(k − 1)h−k+2(h + 1) for h ≥ k .

For k = 2, the class S(123, 132) is obtained, whose corresponding succession

rule has been considered in Section 3.4.1. Note that it does not correspond

with the one obtained from the above one poising k = 2.

For k = 3 (the class is S(123, 2143)) we get the succession rule:




(1)

(1) Ã (2)

(h) Ã (2)h−1(h + 1) ,

leading to the even index Fibonacci numbers. Note that it is different from
the succession rule corresponding to the same numbers of Section 3.3. Its
associated production matrix [DFR1] is:

M3 =

0
BBBBBBBBB@

0 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 2 0 1 0 · · ·
0 3 0 0 1 · · ·
...

...
...

...
...

. . .

1
CCCCCCCCCA

.

For each k ≥ 4, it is easy to check that the production matrix related to Ωk

satisfies

Mk =


 0 uT

0 Mk−1 + euT


 ,

where uT = (1, 0, 0, . . .) and e = (1, 1, 1, . . .)T . Then, if gMk
(x) is the corre-

sponding generating function, we deduce [DFR1]:

gMk
(x) =

1
1− xgMk−1(x)

.

If g(x) denotes the limit of gMk
(x), the functional equation g(x) = 1

1−xg(x)

is obtained, which is verified by the generating function C(x) of the Catalan

numbers.
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3.5 From Fibonacci to Catalan directly

This section summarizes the results found when the two patterns 132 and

213 are generalized at the same time, considering the class S(123, (k−1)(k−
2) . . . 21(k + 1)k), k(k− 1) . . . 21(k + 1)) in order to obtain the class S(123),

when k grows to ∞. Most of the proofs are omitted but they can easily

recovered by the reader. At the first step, for k = 3, we find the succession

rule: 



(1)

(1) Ã (2)

(2) Ã (2)(3)

(3) Ã (2)(2)(3)

corresponding to Sn(123, 2143, 3214). This class is enumerated by Pell num-

bers which we define with the recurrence:




p0 = 1

p1 = 1

p2 = 2

pn = 2pn−1 + pn−2, n ≥ 3

Note that the initial conditions are different from the usual ones (which are

p0 = 0 and p1 = 1) in order to consider the empty permutation ε, for n = 0.

For a general k we have the class Sn(123, (k − 1) · · · 1(k + 1)k, k(k −
1) · · · 1(k + 1)). We briefly describe the construction of the permutations of

the class (the details are omitted). Let π be a permutation of the class. It

is easily seen that if πl = n, then l ≤ k. Therefore, if (h) denotes the label

of π, it is h ∈ {1, 2, . . . , k}. Now, if h < k, then π̄(1) has label (h + 1) and

π̄(j), j = 2, 3, . . . , h, has label (j). While, if h = k, then π̄(1) has label (k),

π̄(j), j = 2, 3, . . . , k − 1, has label (j) and π̄(k) has label (k − 1), again. The
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construction can be encoded in the succession rule:




(1)

(1) Ã (2)

(h) Ã (2)(3) · · · (h− 1)(h)(h + 1) h < k

(k) Ã (2)(3) · · · (k − 1)(k − 1)(k) .

For each k, considering the associated production matrices [DFR1] and the

corresponding generating functions, it possible to prove that, in the limit,

the generating function of the Catalan numbers is obtained.

3.5.1 A continuity between Pell numbers and even index Fi-

bonacci numbers

We conclude by showing that it is possible to find a “continuity” between Pell

and even index Fibonacci numbers. We start from the class Sn(123, 2143, 3214)

(obtained by posing k = 3 in the preceding succession rule) enumerated by

Pell numbers, then we generalize the pattern 2143, so obtaining the classes

S(123, 3214, 21(k + 1)k(k − 1) . . . 43).

Let π ∈ Sn(123, 3214, 21(k + 1)k(k − 1) . . . 43). Then, if πl = n, it is

l ≤ 3 in order to avoid the patterns 123 and 3214. Therefore, π has at most

3 active sites (the first three sites of π). We denote rπ the number of entries

of π with index j ≥ 3 such that πj > π1 (note that if π1 > π2, then rπ = 0).

It is:

• πj1 > πj2 > . . . > πjrπ
(the pattern 123 is forbidden);

• rπ ≤ (k − 2) (the pattern 21(k + 1)k . . . 43 is forbidden);

• the elements πji are adjacent in π in order to avoid 123 or 21(k +

1)k . . . 43.

If π starts with an ascent (i.e. π1 < π2), then only the first two sites are

active, since the insertion of n+1 in any other site would create the pattern

123: the permutation π has label (2).
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If π starts with a descent (i. e. π1 > π2), then the number of its active

sites depends on rπ:

1. If rπ = h < k − 2, then π has three active sites. Let (3h) be its label.

The permutation π̄(1) (obtained by π by inserting n+1 in the first site)

starts with a descent and rπ̄(1) = 0 (since π̄(1)1 = n + 1); therefore,

π̄(1) has label (30). The son π̄(2) starts with an ascent and its label is

(2). The last son π̄(3) starts with a descent and rπ̄(3) = h + 1, so its

label is (3h+1). The production of (3h) is (3h) Ã (2)(30)(3h+1).

2. If rπ = k − 2, then π has two active sites, since the insertion in the

third site would create the pattern 21(k+1)k . . . 43, while the insertion

in any other site surely creates the pattern 123. Its son π̄(1) has label

(30) since it starts with a descent and rπ(1) = 0. While the other son

π̄(2) starts with an ascent and has label (2). Therefore, the production

of label (2) is (2) Ã (2)(30).

The following succession rule:




(1)

(1) Ã (2)

(2) Ã (2)(30)

(3j) Ã (2)(30)(3j+1), for j = 0, 1, 2, . . . , k − 3

(3k−3) Ã (2)(2)(30)

summarizes the construction of the class S(123, 3214, 21(k+1)k . . . 43). Solv-

ing the system one can deduce from the above rule, the generating function

F̄k(x) = 1−2x+xk

1−3x+x2+xk is obtained, which in the limit is the generating function

of the even index Fibonacci numbers F̄ (x).

Starting from the class S(123, 2143, 3214, ), one can generalize the pat-

tern 3214 instead of 2143. The class we get is S(123, 2143, k(k−1) . . . 32(k+

1)1) and the succession rule describing its construction is (the easy proof is
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omitted): 



(1)

(1) Ã (2)

(h) Ã (2)h−1(h + 1) for h < k

(k) Ã (2)k−1(k) .

Once again, one can prove that the corresponding generating function is

F̄k(x), leading, in the limit, to F̄ (x).

3.6 Remarks

In order to summarize the several “continuities” we have here proposed,

we condense our results in Figure 3.1 where a straight line represents a

direct step and a dashed line represents a family of permutations obtained

by generalizing one or two patterns.

The results we found for permutations can be easily extended to Dyck

paths and planar trees by means of ECO method [BDPP, BDPP1]. We

can find classes of paths and trees described by the finite succession rules

we introduced by imposing some conditions on the height of paths and the

level of their valleys and on the outdegree and level of nodes in the trees.

Figure 3.1 allows to see the different three ways we have followed to

describe a discrete “continuity” between Fibonacci and Catalan numbers:

the generalization of a single pattern (the rightmost and the leftmost path

from the top to the bottom in the figure) and the generalization of a pair of

patterns (central path in the figure). In particular, following the rightmost

and the leftmost path in the graph, the intermediate level of the permuta-

tions enumerated by {2n−1}n≥0 is encountered. For each k, our approach

produces two different class of permutations enumerated by the same se-

quence, indeed the two corresponding generating functions are the same for

each k. We note that, in this way, we can provide two different succession
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Figure 3.1 The graph of permutations.

rules encoding the same sequence. An instance can be seen by looking at

the succession rules the reader can find at the end of the Sections 3.2 and

3.4.1.

The same happens with the succession rule at the end of Section 3.4.2

and the succession rule of the particular case (k = 3) of Section 3.4.2, which

encode the sequence of the even index Fibonacci numbers. Really, we did

not prove that this is the case for each k related to the classes of permuta-

tions used to describe the discrete continuity between {2n−1}n≥0 and Cata-

lan numbers, since we did not get the explicit formulas of the generating

functions.





Chapter 4

Order properties of pattern

avoiding permutations

It is well known that the symmetric group Sn endowed with the strong

Bruhat order does not posses a lattice structure. The main results of this

chapter concern certain subsets of Sn of (generalized) pattern avoiding per-

mutations which are proved to have a distributive lattice structure. The

leading idea is considering some remarkable lattice paths (more precisely

Dyck, Motzkin and Schröder paths) on which it is possible to define a natural

order [FP2] such that those set of paths are distributive lattices. Then, via

some suitable known bijections, certain classes of corresponding restricted

permutations are considered, analyzing which are the properties of the in-

duced order. In the cases of Dyck and Motzkin paths this order coincides

with the induced strong Bruhat order of the symmetric group. We note that

similar results were found by other authors [BW, Dr], nevertheless they were

concerned with the weak order on permutations.

The covering relation in the strong Bruhat order is as follows. For σ, τ ∈
Sn, the permutation τ covers σ if it can be obtained by σ interchanging two

entries σi and σj (i < j and σi < σj), such that σl < σi or σl > σj , for each

l such that i < l < j. In the weak order, τ covers σ if it is obtained by σ
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interchanging two adjacent elements and if it has more inversions than σ.

Moreover, we recall that in both orders the rank function is given by the

number of inversions.

4.1 A distributive lattice structure connecting Dyck

paths noncrossing partitions and 312-avoiding

permutations

We start by considering noncrossing partitions. A set partition is said to be

noncrossing when, given four elements, 1 ≤ a < b < c < d ≤ n, such that

a, c are in the same block and b, d are in the same block, then the two blocks

coincide. The set of all noncrossing partitions of an n-set will be denoted

NC(n). We make use of the following notation: each noncrossing partition

π = B1|B2 · · · |Bk is expressed by listing its blocks Bi in increasing order of

their maxima, whereas the elements inside each block are listed in decreasing

order. It is clear that every (noncrossing) partition can be uniquely written

in this way, which will be called here the standard notation for (noncrossing)

partitions.

It is known that noncrossing partitions can be endowed with the refine-

ment order, so to obtain the partition lattices, first studied by Kreweras

[Krew], which have many interesting properties. Nevertheless, they are not

distributive. Our question is if there is the possibility of defining some in-

teresting distributive lattice structure on noncrossing partitions? We claim

that the answer is affirmative by explicitly finding an order on noncrossing

partitions which is isomorphic to at least two combinatorially meaningful

distributive lattices.

We first consider Dyck paths and define an order on them as follows:

given two Dyck paths P,Q of the same length, we say that P ≤ Q when

P entirely lies below Q (possibly coinciding with Q in some points). It is
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possible to show [FP2] that the set of Dyck paths of any given length en-

dowed with this order is a distributive lattice. Our idea is to transfer such a

structure on noncrossing partitions along a famous bijection (see [Si]). We

have called Bruhat noncrossing partition lattices the distributive lattices of

noncrossing partitions arising in this way; Section 4.1.3 is devoted to the

study of some properties of these lattices. Moreover, Bruhat noncrossing

partition lattices turn out to be isomorphic to an even more interesting

class of lattices. It is not difficult to explicitly find a bijection between non-

crossing partitions and 312-avoiding permutations. More precisely, we show

that such a bijection is an order-isomorphism between the Bruhat lattice

of noncrossing partitions of an n set and the class Sn(312) of 312-avoiding

permutations of an n set endowed with the (strong) Bruhat order. As a

byproduct, we have that Sn(312) is a distributive sublattice of the symmet-

ric group of order n with the Bruhat order. These results are contained in

Section 4.1.4, where we also find a criterion to determine the meet and the

join of two permutations in Sn(312). To the best of our knowledge, the only

paper dealing with this kind of matters is [P], where the author determines

the Bruhat posets (arising from Weyl groups) which are lattices. However,

the language and the aims of [P] are totally different from the ones of our ap-

proach. It would be interesting to compare our results with those of Proctor.

However, it seems to us that our result is the first one concerning the order

structure induced by the strong Bruhat order on a class of pattern-avoiding

permutations.

The final part of this introduction is devoted to the explanation of the

main notation we use through this section and to the presentation of the

basics of some general theories we refer to in the next pages.

The covering relation of any poset we are going to consider throughout

the section will be denoted by the symbol ≺, so that x ≺ y means “x is

covered by y”. The set (and the lattice) of partitions of [n] = {1, 2, . . . , n}
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will be denoted by Π(n). If π ∈ Π(n), we will always use the notation

π = B1|B2| . . . |Bk, where the Bi’s are the blocks of π, the elements inside

each block are in decreasing order and maxBi < maxBj , for i < j. We

will often deal with Dyck paths and, depending on the context, we will

find convenient to describe them in several different ways. Therefore a Dyck

path will be alternatively described as a particular lattice path in the discrete

plane N×N (and denoted by capital letters like P,Q, R, . . .) or as a function

f : N −→ N satisfying certain properties (and denoted by lowercase letters

like f, g, h, . . .) or else as a particular word on the two-letter alphabet {U,D}
(and denoted by Greek letters such as ω(U,D), ψ(U,D), . . .). We leave to

the reader the details of the descriptions of Dyck paths we have sketched in

the previous sentence.

4.1.1 Preliminaries on set partitions

We start by recalling the main properties of set partitions with respect to

the classical order by refinement. Therefore, this section has to be intended

as a selected survey of some properties of partition lattices. In order not to

repeat the content of some classical textbook word by word, we have chosen

to use an alternative language. What we have obtained is a presentation of

some classical results on set partitions in the framework of the ECO method

and succession rules, which we hope to be of some interest to the reader.

Given π, ρ ∈ Π(n), define π ≤ ρ when every block of π is contained

into some block of ρ. The many properties of this classical order can be

found in several sources, such as [A1, S1]. Here we only mention that Π(n)

endowed with this refinement order is a lattice which is neither distributive

nor modular. Nevertheless, it possesses a rank function: the rank of π =

B1|B2| . . . |Bk is n − k. The Whitney numbers of the partition lattices are

the well-known Stirling numbers of the second kind. The Hasse diagram of

Π(4) is shown in Figure 4.1.
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4 3 2 1

1 | 2 | 3 | 4

21 | 3 | 4 2 | 3 | 412 | 31 | 4 1 | 32 | 4 1 | 3 | 42 1 | 2 | 43

21 | 433 | 421 31 | 42321 | 4 2 | 431 1 | 43232 | 41

Figure 4.1 Π(4).

A classical recursive construction of set partitions works as follows: given

π = B1|B2| . . . |Bk ∈ Π(n), either add n+1 to any of the blocks of π or insert

the new block Bk+1 = {n + 1}. In this way we obtain k + 1 new partitions

of [n + 1], namely πi = B1| . . . |Bi−1|Bi+1| . . . |Bk|(n + 1)Bi, i = 1, . . . , k

and πk+1 = B1| . . . |Bk|(n + 1). Observe that this classical construction can

be interpreted into the framework of the ECO method and encoded by the

following succession rule:





(1)

(k) Ã (k)k−1(k + 1).

This succession rule should be read as follows. Label each partition with

the number of its blocks, plus 1. Then a partition labelled (k) produces k

new partitions; of these, k − 1 are still labelled (k), whereas the last one is

labelled (k + 1).

We say that π, ρ ∈ Π(n) are ECO-equivalent when they are produced by

the same partition of Π(n− 1) (i.e., they have the same father in the gener-

ating tree of the above succession rule). It turns out that each equivalence

class with the induced order is a flat [DP], that is, a poset with minimum
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Figure 4.2 The flat partition of Π(4).

in which all the remaining elements are maximal. Therefore, thanks to the

previous ECO-construction, we get a “flat partition” of every Π(n).

The following proposition, whose proof is straightforward, contains some

properties of this flat partition.

Proposition 4.1.1 The lattice Π(n) is partitioned into Bn−1 flats1; more

precisely, for 1 ≤ k ≤ n− 1, there are Sn−1,k flats 2 of cardinality n + 1− k,

whose minima have rank k−1. The order induced on the set of such minima

is isomorphic to Π(n−1). If we compute the Whitney numbers of Π(n) using

this flat partition we obtain the well-known recursion for the Sn,k’s, namely

Sn+1,k = Sn,k−1 + kSn,k.

4.1.2 Noncrossing partitions and Dyck paths

A partition of 1, 2, . . . , n is noncrossing when, given four elements, 1 ≤ a <

b < c < d ≤ n, such that a, c are in the same block and b, d are in the same

block, then the two blocks coincide. The set of all noncrossing partitions of

an n-set will be denoted NC(n). We refer the reader to the fairly complete
1Bn is the n-th Bell number.
2Sn,k is the n, k entry of the triangle of the Stirling numbers of the second kind.
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survey [Si] and to the references therein for the plentiful applications of this

notion.
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1 2 3 4 5 6 7 8 9

Figure 4.3 The noncrossing partition 2|654|8731|9 ∈ NC(9).

The refinement order can be restricted to noncrossing partitions: what

we obtain is again a lattice, which is usually referred to as the noncrossing

partition lattice. Among the main features of these lattices we recall here

that they are not distributive and the lattice operations are different from

those of the partition lattices (the join of two noncrossing partitions needs

not be noncrossing within the full partition lattice).

Noncrossing partitions are enumerated by Catalan numbers, so, as it

often happens, it is possible to find a bijection with Dyck paths. The nice

bijection we are going to describe can also be found, for instance, in [De, Si].

Fix a Dyck path and label its up steps by enumerating them from left to

right (so that the k-th up step is labelled k). Next assign to each down step

the same label of the up step it is matched with. Now consider the partition

whose blocks are constituted by the labels of each sequence of consecutive

down steps. Such a partition is easily seen to be noncrossing. In Figure

4.4 we have illustrated this bijection on a concrete example; the bold labels

next to the down steps are the elements of the corresponding noncrossing

partition, whereas the up steps are simply labelled in increasing order.

Now denote by Dn the set of Dyck paths of length 2n. It is possible to

define a natural order on Dn by setting f ≤ g whenever f(i) ≤ g(i), for

every i ∈ N. This means that f ≤ g when f “lies weakly” below g. The set

Dn, endowed with such an order, turns out to be a distributive lattice, which

has been studied in some detail in [FP2] under the name of Dyck lattice (of



Chapter 4. Order properties of pattern avoiding permutations 84

1 1

4

6

3

5

2

8

7

9

2 3

4

5

6

7

8

9

Figure 4.4 The Dyck path associated with 2|654|8731|9.

order n). We point out that Dyck lattices have also been considered in [CJ],

where the authors speak of geometric inclusion of paths.

Our idea is to transfer the order structure of Dyck lattices along the

above described bijection. In this way we define a new order on noncross-

ing partitions. The distributive lattices obtained in this way will be called

Bruhat noncrossing partition lattices. The reason of this name, which is at

present rather obscure, will become clear in Section 4.1.4. Our main goal is

to give a satisfactory description of such lattices.

In the rest of this section we propose a presumably new construction

for noncrossing partitions by transferring a well-known ECO-construction

of Dyck paths3 described in [BDPP1] along the previous bijection. As a

byproduct, we will find a statistic on noncrossing partitions whose distribu-

tion is given by the ballot numbers.

Fix a partition π = B1| . . . |Bk−1|Bk ∈ NC(n), with Bk = a1 . . . ar.

Starting from π we construct r+1 new partitions, namely π1 = B1| . . . |Bk|(n+

1), πi = B1| . . . |Bk−1|a1 . . . ar−i+1|(n + 1)ar−i+2 . . . ar (for i = 2, . . . r), and

πr+1 = B1| . . . |Bk−1|(n + 1)a1 . . . ar. This construction of noncrossing par-
3The construction goes as follows: a Dyck path P of length 2n generates a set of Dyck

paths of length 2n+2 by inserting a peak in each point of the last sequence of consecutive

down steps.
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tition is “isomorphic” to the above mentioned ECO-construction for Dyck

paths. The next proposition translates on noncrossing partitions some enu-

merative results produced by this construction.

Proposition 4.1.2 Starting from NC(n− 1), every partition of NC(n) is

obtained precisely once by means of the above construction. More precisely,

if a noncrossing partition is labelled by the cardinality of the block containing

its maximum, plus 1 (so that π = B1| . . . |Bs is labelled (|Bs|+ 1)), then our

construction can be described by means of the following succession rule:

Ω :





(1)

(k) Ã (2)(3)(4) · · · (k)(k + 1)
.

Consequently, we have that the number of noncrossing partitions of [n]

such that the block containing n has cardinality k − 1 equals the number of

Dyck paths of length 2n whose last descent has k−1 down steps, which is the

ballot number k+1
n

(
2n−k−2
n−k−1

)
(see [BDPP1] for the enumerative combinatorics

of the rule Ω).

Remark. We point out that the above construction of noncrossing par-

titions has many similarities with the one given in the last section of [A],

where the author illustrates the basics of a method of enumeration via bal-

lot tables. It would be interesting to relate this approach with the ECO

methodology.

4.1.3 The Bruhat noncrossing partition lattice

In the rest of this section it is tacitly assumed that noncrossing partitions

are endowed with the Bruhat order defined above.

Given two noncrossing partitions π, ρ we look for some condition to rec-

ognize if π ≺ ρ or not. The following theorem gives a precise answer to this

problem.
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Theorem 4.1.1 (Characterization of coverings) Given two noncrossing par-

titions π, ρ ∈ NC(n), we have π ≺ ρ if and only if ρ is obtained from π by

moving the minimum of some block B of π into the block B̃ containing the

element β = max B + 1 and either

1. keeping β inside B̃, if β = max B̃, or

2. adding a new block B = {β}, if β 6= max B̃.

Proof. Suppose that Pπ, Pρ are the Dyck paths associated with π, ρ,

respectively. The fact that Pπ ≺ Pρ in Dn means that Pρ is obtained from

Pπ by replacing a valley with a peak. In the context of noncrossing partitions

this amounts to moving the minimum a of a block, since the down step of

a valley is the last step of a descent. The element a is moved into the block

containing the element corresponding to the down step matched with the

up step of the valley. It follows directly from the above bijection that such a

down step has label equal to β = max B+1, where B is the block containing

a in π. The following figure illustrates these facts.

a a βββββ a a
βββββ

Now, what happens with the element β? There are essentially two dif-

ferent cases. If the up step of the valley in Pπ is followed by another up

step, then β is not the maximum of its block in π, and it is easy to check

that in ρ it becomes a singleton block (since in Pρ the corresponding step is

preceded and followed by up steps).
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a a βββββ

ββββ−−−−1111β−1

a a
βββββ

ββββ−−−−1111β−1

If the up step of the valley is followed by a down step, then β is the

maximum of its block in π, and it remains in the same block also in ρ, as

illustrated in the next figure.

a a βββββ

ββββ−−−−1111β−1

a a
βββββ

ββββ−−−−1111β−1

¤

Example. Given the partition 2|54|631 ∈ NC(6), there are precisely

two partitions covering it, which are 3|54|621 (2 is moved and 3 is not the

maximum of its block) and 2|5|6431 (4 is moved and 6 is the maximum of

its block).

It is interesting to observe that the two “instructions” 1. and 2. in the

previous theorem have a striking analogy with the definition of a filler given

in [DS]. Recall that a point i ∈ {2, 3, . . . , n} is called a filler of π ∈ NC(n)

if either (i) i − 1 and i are in the same block and i is the largest element

of its block, or (ii) i forms a singleton block and i − 1 is not the largest

element in its block. Indeed, a filler is produced whenever a valley preceded
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by an up step is changed into a peak in the associated Dyck path. Thus a

filler in a noncrossing partition corresponds to a down step preceded by a

long ascent in the associated Dyck path (where a long ascent is a sequence

of two or more consecutive up steps). Therefore, the number of noncrossing

partitions of an n-set having k fillers coincides with the number Tn,k of Dyck

paths of length 2n having k long ascents, namely (see [S1]):

Tn,k =
1

n + 1

(
n + 1

k

) n−2k∑

j=0

(
k + j − 1

k − 1

)(
n + 1− k

n− 2k − j

)
.

Our next result is a criterion to compare two given noncrossing parti-

tions. In order to properly state it, we need to introduce a technical defini-

tion. We define the max-vector of a noncrossing partition π ∈ NC(n) to be

the vector max(π) = (µ1, . . . , µn) such that µi is the maximum of the first i

elements of π. So, for instance, if π = 2|31|54, then max(π) = (2, 3, 3, 5, 5).

We invite the reader to check that the max-vector uniquely determines its

associated noncrossing partition. This fact will be very important in the

sequel.

Theorem 4.1.2 (Characterization of the Bruhat order of NC) Let π, ρ ∈
NC(n). Then π ≤ ρ if and only if max(π) ≤ max(ρ) in the coordinatewise

order.

Proof. Let ω1 = ω1(U,D) and ω2 = ω2(U,D) be the two Dyck paths

corresponding to π and ρ, respectively. Then it is clear that ω1 ≤ ω2 if and

only if every prefix of ω1 contains at least as many D’s as the corresponding

prefix of ω2. This can be translated on partitions using max-vectors. Indeed,

if max(π) = (µ1, . . . , µn) and max(ρ) = (ν1, . . . , νn), consider the two vectors

(µ1, . . . , µn) and (ν1, . . . , νn), where µi = µi + i and νi = νi + i. Then, it is

not difficult to observe that µi and νi encode the position of the i-th D in

the corresponding Dyck path. From the hypotheses, we have that the i-th
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D of ω1 occurs before the i-th D of ω2, and so µi ≤ νi. Since this holds for

every i ≤ n, the thesis follows.

¤

Example. Let π = 2|43|51|6, ρ = 43|52|61 ∈ NC(6). We easily find

max(π) = (2, 4, 4, 5, 5, 6) and max(ρ) = (4, 4, 5, 5, 6, 6). It is immediate to

see that max(π) ≤ max(ρ), whence π ≤ ρ.

Remark. Observe that, if π ≺ ρ, then max(π) and max(ρ) differ precisely

in one position.

At this stage it is worth observing that the Bruhat noncrossing partition

lattices can be alternatively described using increasing parking functions.

Recall that an increasing parking function is a sequence a1 ≤ a2 ≤ · · · ≤ an

such that ai ≤ i, for all i ≤ n. The poset of increasing parking functions of

[n] with the coordinatewise order is clearly a distributive lattice. It is not

difficult to show that such a lattice is isomorphic to the dual Bruhat non-

crossing partition lattice on n elements. Indeed, the correspondence map-

ping (a1, a2 . . . , an−1, an) into the sequence (n+1−an, n+1−an−1, . . . , n+

1− a2, n + 1− a1 is an order-reversing bijection between increasing parking

functions of [n] and the set of max-vectors of noncrossing partitions of [n].

It is known [FP2] that Dyck lattices possess a rank function (simply

because they are distributive lattices) which is essentially given by the area

bounded by a Dyck path and the x-axis. More precisely, if A(P ) is the area

of a Dyck path P of length n, then the rank of P inside its Dyck lattice is

given by r(P ) = A(P )−n
2 . Our next goal is to translate the parameter “area

under Dyck paths” into a parameter on noncrossing partitions, in order to

define a rank on the Bruhat noncrossing partition lattices.

Our first result is a formula for the area of Dyck paths in terms of its

peaks and valleys. Since we have not found such a formula in the literature,

we also propose a proof for the reader’s convenience.
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pk

pk+1

vk

P’

P

Figure 4.5 How P ′ is obtained from P .

Lemma 4.1.1 Let P be a Dyck path. Let pi and vj denote the height of

the i-th peak and the j-th valley of P , respectively. Assuming by convention

that, if P has k peaks, then vk = 0, we have:

A(P ) =
∑

i

(p2
i − v2

i ). (4.1)

Proof. We proceed by induction on the number of peaks. If a Dyck path

P has only one peak, then it is the maximum of its Dyck lattice, and the

formula immediately follows. Now suppose that P has k+1 peaks. Consider

the path P ′ obtained by P by removing the last peak, i.e. coinciding with

P up to the k-th peak and then ending with a sequence of down steps (see

Figure 4.5).

It is now easy to see that

A(P ) = A(P ′) + p2
k+1 − v2

k,

whence, thanks to the induction hypothesis:

A(P ) =
∑

i

(p2
i − v2

i ). ¤

Now we are ready to find a formula to express the rank of a partition in

the Bruhat noncrossing partition lattice.
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Theorem 4.1.3 NC(n) is a distributive lattice, and therefore it is ranked.

More precisely, if π = B1| . . . |Bk ∈ NC(n), then its rank is given by:

rn(π) =
A(π)− n

2
, (4.2)

where

A(π) =
k∑

i=1


|Bi|


2bi − 2

i−1∑

j=1

|Bj | − |Bi|




 (4.3)

(here bi = maxBi).

Proof. Let P be a Dyck path and π = B1| . . . |Bk its associated noncross-

ing partition. Clearly the number of peaks of P coincides with the number

of blocks of π. If (x, pi) is the i-th peak of P , then pi is the difference

between the number u of up steps and the number d of down steps up to

(x, pi). In the language of noncrossing partitions, u is the maximum bi of

the i-th block of π, and d is simply the sum of the cardinalities of the first

i− 1 blocks of π. Therefore we have:

pi = bi −
i−1∑

j=1

|Bj |.

Analogously, if vi is the height of the i-th valley of P , we find:

vi = bi −
i∑

j=1

|Bj |.

Plugging these quantities in the formula found in Lemma 4.1.1, we finally

obtain:

A(π) =
k∑

i=1





bi −

i−1∑

j=1

|Bj |



2

−

bi −

i∑

j=1

|Bj |



2


=
k∑

i=1


|Bi|


2bi − 2

i−1∑

j=1

|Bj | − |Bi|




 . ¤
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4.1.4 Relationship with the strong Bruhat order on permu-

tations

The last formula given for the rank of a noncrossing partition inside its

Bruhat lattice is not as easy to understand as the rank function for Dyck

paths. In order to find a better way to express this parameter, we make

use of the concept of (generalized) pattern avoiding permutation. What we

obtain is yet another description of Bruhat noncrossing partition lattices

which provides some important information on the (strong) Bruhat order of

the symmetric groups.

Proposition 4.1.3 Removing the bars in noncrossing partitions defines a

bijection between NC(n) and the set Sn(312) of 312-avoiding permutations

of [n], for any n ∈ N.

Proof. First observe that, for any n ∈ N, Sn(312) = Sn(31-2), since it is

known that these two finite sets are both enumerated by Catalan numbers

and obviously Sn(312) ⊆ Sn(31-2). Now, if a pattern 31-2 appears in a

noncrossing partition, then, denoting by b < c < a the three elements cor-

responding to such a pattern, a and b must belong to the same block, and

the maximum d of the block containing c must be larger than a (since the

maximum of a block in a noncrossing partition is larger than every element

preceding it). Thus, the four elements a, b, c, d would constitute a crossing,

against the hypothesis.

¤

Remark. In the rest of this section we will make an extensive use of the

above described canonical bijection. In particular, we will freely switch from

a noncrossing partition to its associated 312-avoiding permutation without

stating it explicitly. Moreover, we will always use the same Greek letters

(π, ρ, σ, . . .) to denote both a noncrossing partition and its associated 312-

avoiding permutation. Finally, observe that each maximum of a block of a
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noncrossing partition corresponds to a left-to-right maximum in the corre-

sponding permutation, that is an element which is greater than every other

element on its left.

Observe that the composition of the bijection between Dyck paths and

noncrossing partitions with the above one between noncrossing partitions

and 312-avoiding permutations is precisely the bijection considered in [BK]

and in [F]. It also appears in [Kra], as a bijection between 132-avoiding

permutations and Dyck paths. Moreover, we would like to point out that a

simple visualization of this bijection, which involves lattice paths connecting

opposite corners of the permutation array, is given in [EP, Re]. Using such

a description, some of the properties of the Bruhat order on noncrossing

partitions, such as Theorem 4.2.3, can be suitably rephrased.

Among the features of above mentioned bijection, a very interesting one

is stated in [BK], where the authors show that the area of a Dyck path

corresponds to the inversion number of the associated permutation. Since

the rank function of the strong Bruhat order on permutations is precisely

the inversion number, we are led to conjecture a close relation between

our noncrossing partition lattices and the subposets induced by the Bruhat

order on 312-avoiding permutations. The next theorem shows the truth of

our conjecture.

Theorem 4.1.4 Let (Sn(312);≤) be the poset obtained by transferring the

structure of the Bruhat noncrossing partition lattice NC(n) along the previ-

ous bijection. This is precisely the subposet induced on Sn(312) by the strong

Bruhat order of the symmetric group Sn. Therefore Sn(312) is a distributive

sublattice of Sn endowed with the strong Bruhat order.

Proof. What we have to show is that the Hasse diagram of the Bruhat

noncrossing partition lattice is isomorphic to that of Sn(312) with the in-

duced strong Bruhat order. To do this, it is enough to prove that the sets
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of elements covering a noncrossing partition and its associated 312-avoiding

permutation coincide, via the bar-removing bijection.

Let π, ρ be noncrossing partitions, and suppose that π ≺ ρ in the Bruhat

noncrossing partition lattice. This means that ρ is obtained from π by

using one of the two rules described in Theorem 4.2.5. In both cases, the

permutation ρ is obtained from the permutation π by interchanging the

minimum a of a block B with β = maxB + 1. On permutations this means

that the inversion number of ρ is larger than that of π (since a < β). Now

to conclude that π ≺ ρ in Sn(312) it remains only to show that the above

transposition does not generate other inversions, or, equivalently, that all

the entries between a and β in π are either smaller than a or larger than

β. Indeed, β − 1 is the maximum of B, so it appears before a in π. Hence,

if there is an element x such that a < x < β and x is between a and β in

π, then we would have a pattern 312, which is excluded. Therefore we have

shown that, if π ≺ ρ in NC(n), then also π ≺ ρ in Sn(312).

To conclude the proof we will show that, if π ≺ ρ in Sn(312), then

necessarily ρ is obtained from π as in Theorem 4.2.5. From the hypothesis

it follows that ρ differs from π by a transposition of a pair of elements a

and β. Suppose that a < β and so a appears before β in π. If a was

not a minimum in the noncrossing partition associated with π, then there

would be an entry x < a appearing after a, and so in ρ the elements β, x, a

would show a pattern 312. Therefore a must be the minimum of its block

B in the noncrossing partition π. Now set b = maxB. We claim that

β = b + 1. Indeed, if not, then β − 1 would not appear between a and β

in π (since otherwise ρ would contain too many inversions). Clearly β − 1

cannot appear before b either, since every entry before b must be smaller

than b. Thus β − 1 lies necessarily on the right of β in π. But in this case

the permutation ρ would contain a pattern 312 in the entries β, a, β − 1, a

contradiction. Therefore β = b + 1, and the theorem is finally proved.
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¤

At this stage it is worth mentioning the following, remarkable corollary.

Corollary 4.1.1 For any n ∈ N, the Dyck lattice Dn is isomorphic to the

lattice Sn(312) with the strong Bruhat order.

Our next goal is to find a synthetic description of the meet and join

operations in the Bruhat lattices of 312-avoiding permutations.

Let π = π1 · · ·πn, ρ = ρ1 · · · ρn ∈ Sn(312). Define the permutation

π ∨ ρ = σ1 · · ·σn by setting σi equal to the largest element among those

smaller than or equal to max{π1, . . . , πi, ρ1, . . . , ρi} not yet appeared in the

previous positions. Analogously, the permutation π∧ρ = τ1 · · · τn is defined

by setting τi equal to the largest element among those smaller than or equal

to min{max{π1, . . . , πi}, max{ρ1, . . . , ρi}} not yet appeared in the previous

positions. For instance, given π = 32657481, ρ = 24378651 we get π ∨ ρ =

34678521 and π ∧ ρ = 23467581. In the following proposition we show

that the above defined operations actually coincide with the join and meet

operations in Sn(312).

Proposition 4.1.4 For any π, ρ ∈ Sn(312), the permutations π ∨ ρ and

π ∧ ρ are respectively the join and the meet of π and ρ in the Bruhat lattice

Sn(312).

Proof. Let max(π) and max(ρ) be the max-vectors of the noncrossing

partitions associated with π and ρ, respectively. The join of the two Dyck

paths associated with π and ρ corresponds to the Dyck path determined by

the coordinatewise join of max(π) and max(ρ), say max(π)∨max(ρ), which

is then the max-vector of the join of π and ρ in Sn(312). There is a unique

312-avoiding permutation associated with max(π) ∨ max(ρ), which can be

obtained as follows: the i-th entry of the permutation is the largest element

among those smaller than or equal to the i-th component of the max-vector
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not yet appeared in the permutation. This corresponds precisely to our

definition of π∨ ρ. The argument for the meet is completely analogous, and

so the proof is complete.

¤

The above results on 312-avoiding permutations give some useful infor-

mation on the order structure of Sn(τ), for any τ ∈ S3. To this aim, a

crucial step is represented by the following general lemma, whose proof can

be found in [I].

Lemma 4.1.2 Let r, c, i : Sn −→ Sn the reverse, complement and inverse

functions on permutations. Then, with respect to the strong Bruhat order, i

is an isomorphism, whereas r, c are antiisomorphisms.

As a consequence, given Sn(τ), for some τ ∈ Sk, endowed with the strong

Bruhat order, if we consider the reverse of each element, we get Sn(ρ), with

ρ = r(τ), endowed with the dual order. Analogous considerations can be

done for the complement and the inverse functions, whence the following

proposition holds.

Proposition 4.1.5 For every n ∈ N, Sn(312) is order-isomorphic to Sn(231)

and order-antiisomorphic to Sn(132) and Sn(213). Therefore all the above

posets are distributive lattices. The posets Sn(123) and Sn(321) are not even

lattices, since they do not have minimum and maximum, respectively.

Clearly, thanks to lemma 4.1.2, the posets Sn(123) and Sn(321) are an-

tiisomorphic.

Open problem 1. Describe the poset Sn(123).

Open problem 2. Fixed k ∈ N, k > 3, for which τ ∈ Sk is Sk(τ) a

(distributive) lattice under the strong Bruhat order? In case of a positive
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answer, is it possible to give some alternative combinatorial descriptions of

such lattices? We point out that this problem has been solved in [Dr] for

the weak Bruhat order.

4.1.5 A possible extension for further work

At the end of our work, we would like to outline the possibility of extending

the present study to the class of unrestricted set partitions. More precisely,

it would be nice to find an order structure on set partitions coinciding with

the Bruhat order when restricted to noncrossing partitions, as well as to

determine a suitable class of paths associated with such an order and to ex-

plore the connections with pattern avoiding permutations. Concerning this

last statement, observe that, if we agree to represent unrestricted partitions

analogously to noncrossing ones (i.e., the elements inside each block are in

decreasing order, and the blocks are listed in such a way that their maxima

are increasing), then there is an obvious bijection between set partitions

and 3-12 avoiding permutations (just adapt the argument of Proposition

4.2.2). Unfortunately, the order structure induced by the strong Bruhat or-

der on Sn(3-12) is not a lattice in general (for instance, when n = 4, the two

permutations 3142 and 2341 do not have a greatest lower bound).

A first step towards this direction will be the object of the last result

of this work. Consider the set Ω of Dyck words, that is the set of all the

words ω of the two-letter alphabet {U,D} satisfying the well-known Dyck

condition, i.e. ω contains the same number of D’s and U ’s, and every prefix

of ω contains at least as many U ’s as D’s. We call a matching of a Dyck

word ω = ω(U,D) any matching between the U ’s and the D’s of ω. We

represent matchings by arc diagrams as in the figure below:
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U U U U U D D D U D D U U U D D D D

We define a Bell matching to be a matching of ω ∈ Ω satisfying the

following two conditions:

1. for any set of consecutive D’s, the leftmost D is matched with the

adjacent U on its left;

2. every other D is matched with a U on its left, in such a way that there

are no crossings among the arcs originated from a set of consecutive

D’s.

U U U U U D D D U D D U U U D D D D

Figure 4.6 A Bell matching of a Dyck word of length 18

The next proposition shows the connection between Bell matchings and

set partitions.

Proposition 4.1.6 There is a bijection between Bell matchings of Dyck

words of length 2n and set partitions of [n].

Proof. Given a Dyck word ω, enumerate the U ’s of ω from left to right,

then label each D with the number of the U is it matched with. The sets of

the labels of each subword of consecutive D’s constitute the block of a set

partition. It is easy to see that this construction can be reversed to get the

desired bijection.
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¤

Observe that noncrossing partitions correspond to Bell matchings with-

out crossings. Clearly, for every Dyck word of length 2n, there is precisely

one Bell matching without crossings.

The class of Bell matchings of Dyck words of any fixed length can be

partitioned as follows. We declare two Bell matchings equivalent when they

are matchings of the same Dyck word. This equivalence relation can be

translated on set partitions, in such a way that each equivalence class con-

tains precisely one noncrossing partition. Our final result is the enumeration

of set partitions by counting the elements in each equivalence class. As a

consequence, we get an expression of Bell numbers in terms of natural pa-

rameters of Dyck paths (height of peaks and valleys) which we believe to be

new.

Theorem 4.1.5 Let π = B1| . . . |Bk ∈ NC(n). Then the equivalence class

[π] has cardinality:

|[π]| =
k∏

i=1

(
bi −

∑i−1
j=1 |Bj | − 1
|Bi| − 1

)
, (4.4)

where bi = maxBi, as usual. Equivalently, the bijection between noncrossing

partitions and Dyck paths translates formula (4.4) into the following:

|[P ]| =
k∏

i=1

(
pi − 1

vi

)
, (4.5)

where P is the Dyck path associated with π and pk and vk are the heights of

the k-th peak and of the k-th valley of P , respectively.

Summing up the cardinalities of all the equivalence classes, we get the

following expression for Bell numbers:

Bn =
∑

P∈Dn

k∏

i=1

(
pi − 1

vi

)
. (4.6)
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Proof. Given the noncrossing partition π, we can obtain formula (4.4)

by considering the Dyck word ω associated with π and then counting the

number of Bell matchings definable on such a word. To this aim, consider

the first set of consecutive D’s in ω. The starting D has to be matched with

the adjacent U , so there is only one possible choice for it; all the remaining

D’s of this first group can be matched with any of the preceding U ’s. Since

the cardinality of the starting factor of U ’s is b1 (i.e., the maximum of the

block B1), and the cardinality of the first set of consecutive D’s is |B1|, we

have
(

b1−1
|B1|−1

)
possible choices. Now consider the second factor of consecutive

D’s in ω. In this case, we have to match all these D’s with any of the

preceding U ’s not previously matched, except for the leftmost D, which

must be matched with the adjacent U . Since we have to choose |B2| − 1

U ’s out of a set of b2 − |B1| − 1 U ’s, the possible choices are
(b2−|B1|−1

|B2|−1

)
.

Iterating this argument we eventually get formula (4.4), as desired.

To obtain formula (4.5) we have to translate parameters on noncrossing

partitions into parameters on Dyck paths, as we did in Theorem 4.7.

¤

4.2 Order properties of the Motzkin and Schröder

families

The main goal of the present section is to find analogous results starting from

the distributive lattices of Motzkin and Schröder paths. More precisely, we

aim at finding suitable modifications of the above described bijections which

allow us to obtain distributive lattice structures on some kind of noncrossing

partitions and pattern avoiding permutations having some combinatorial

relevance. In the Motzkin case, our results are reported in Section 4.2.1

and are strikingly similar to those of the Catalan family. Our basic tool is

a bijection described in [EM2] which codifies Motzkin paths by means of
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a special kind of Dyck paths. Moreover, our main result is the fact that

Sn(31−2), k−(k−1)(k−2) . . . 21 is a distributive lattice (endowed with the

strong Bruhat order) for every k ≥ 2; to the best of our knowledge, this is

a new result of order-theoretic flavor concerning classes of pattern avoiding

permutations.

In the Schröder case, things are not so neat, and we need to introduce

coloured objects to achieve some satisfactory results (which are described in

Section 4.2.2). The last section is devoted to the presentation of some open

problems (many of which are also scattered throughout the section), as well

as of some possible directions of future research.

At the end of this introduction, we give explanations concerning some

notations we are using.

The word “bar” is used to denote both vertical and horizontal bars, so

that its meaning depends on the context. When we speak of “bar-removing

bijection”, we mean the function which removes the vertical bars in the

standard notation of a partition to obtain a permutation, whereas the terms

“barring” and “unbarring” indicate the operation of putting and removing

a horizontal bar over an element of a permutation. However, the choice

between vertical and horizontal should be clear from the context.

The sequences of Schröder and Narayana numbers will be denoted by

(Rn)n∈N and (N(n, k))n,k∈N, respectively.

The up, horizontal and down steps in Dyck, Motzkin and Schröder paths

will be denoted u, h, d, respectively. A Dyck path of length 2n is a lattice

path consisting of u and d steps, from (0, 0) to (2n, 0) which never pass

below the x-axis. A Motzkin path of length n is a lattice path which uses

u, d and h steps, from (0, 0) to (n, 0), never passing below the x-axis. A

Schröder path of length 2n is a lattice path starting from (0, 0) to (2n, 0)

consisting of u, d and hh (double horizontal) steps, never going below the

x-axis.
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The symmetric group on n elements will be denoted by Sn, whereas the

set of coloured permutations on n elements will be denoted by Sn.

4.2.1 Motzkin paths

We start by recalling a bijection introduced by Elizalde and Mansour [EM]

between the set Mn of Motzkin paths of length n and the set D(3)
n of Dyck

paths of length 2n without three consecutive down steps. Every Dyck path

P ∈ D(3)
n can be uniquely decomposed into factors of the following three

types: u, ud, udd. Define a Motzkin path f(P ) by translating the above

factors according to the following:

u → u

ud → h

udd → d

f(P ) has length n and it is possible to show that the function f is a

bijection. Our next proposition shows that f has some more structural

properties.

Proposition 4.2.1 The function f : D(3)
n −→Mn is an order-isomorphism.

Proof. Let P, Q ∈ D(3)
n such that P ¹ Q. This means that Q is obtained

from P by changing a valley into a peak. Call box the two steps on which

P and Q differ. However, we notice that, unlike it happens for the whole

Dn, in some cases performing the above operation on paths belonging to

D(3)
n does not produce a path of the same kind: this occurs precisely when

a valley is followed by two or more down steps. When we apply f to P and

Q, several different things can happen, according to the type of the steps

next to the box. Since the down step of a valley cannot be preceded by two

or more down steps, there are only two possibilities for P and Q, namely

the box is preceded either by u or by ud. Analogously, the down step of
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a peak cannot be followed by two or more down steps, whence also in this

case we have two different cases, i.e. the box is followed either by u or by

du. Therefore we have a total of four cases, depicted in the figure below:

Now apply f to each of the above, to obtain respectively the following four

cases on the corresponding Motzkin paths:

As it is clear, each situation yields two Motzkin paths f(P ), f(Q) such

that f(P ) ¹ f(Q), as desired.

Conversely, an analogous argument shows that, if P, Q are arbitrary

Motzkin paths for which P ¹ Q, then f−1(P ) ¹ f−1(Q), so the proof is

complete.

¤

The bijection between Dn and NC(n) recalled in the introduction can be

restricted to D(3)
n ; the corresponding subset of NC(n) is easily seen to consist

of noncrossing partitions whose blocks have cardinality at most 2. Call such

partitions Motzkin noncrossing partitions. Thanks to the last proposition

we can establish the following result.

Theorem 4.2.1 The set MNC(n) of Motzkin noncrossing n-partitions can

be endowed with a distributive lattice structure, which is isomorphic to the

lattice of Motzkin paths of length n. More precisely, given π, ρ ∈ MCN(n),

we have that π ¹ ρ if ρ is obtained from π by moving the minimum of some

block B of π into the block B̃ containing the element β = maxB + 1 if

β = min B̃. In this case, either:

1. keep β inside B̃, if |B̃| = 1, or



Chapter 4. Order properties of pattern avoiding permutations 104

2. add a new block B = {β}, if |B̃| = 2.

Proof. The first part of the theorem is an easy consequence of propo-

sition 4.2.1. As far as the covering relation is concerned, the above result

for Motzkin noncrossing partitions immediately derives from the analogous

one given in [BBFP] for general noncrossing partitions. The only thing to

take into account is that a Motzkin noncrossing partitions has blocks of

cardinality at most 2, and so, if |B̃| = 2 and β = max B̃, the above men-

tioned rule cannot be applied since the resulting partition would not belong

to MNC(n).

¤

Example. Given the partition 2|31|65|74|8 ∈ MNC(n), there are two

partitions covering it, which are 2|3|4|65|71|8 (1 has been moved into a block

with two elements) and 2|31|65|7|84 (4 has been moved into a block with

one element). Note that the partitions obtained by moving 2 or 5 are not

listed above, since the elements 3 and 7 are not the minima of their blocks.

Remark. Another consequence of proposition 4.2.1 is that the rank of

a partition of MNC(n) corresponds to the area of the associated Motzkin

path, this meaning that two partitions of MNC(n) have the same rank if

and only if the associated Motzkin paths have the same area. Also in this

case, a formula expressing the area using parameters on partitions (such as

cardinality of a block and maximum of a block) can be found as in [BBFP].

Similarly to [BBFP], it is possible to transfer the distributive lattice

structure of Motzkin noncrossing partitions to a suitable subset of pattern

avoiding permutations via a bar-removing bijection. In [C] it is shown (bi-

jectively) that Sn(3− 21, 31 − 2) is counted by Motzkin numbers. Here we

give an essentially equivalent bijection between MNC(n) (and so Motzkin

paths) and Sn(3− 21, 31− 2).



Chapter 4. Order properties of pattern avoiding permutations 105

Proposition 4.2.2 Removing the vertical bars in Motzkin noncrossing par-

titions defines a bijection between MNC(n) and the set Sn(3 − 21, 31 − 2)

of pattern avoiding permutations of [n], for any n ∈ N.

Proof. Let π be a permutation of Sn(3−21, 31−2). It is straightforward

to see that the associated partition is a noncrossing partition, since π avoids

the pattern 31 − 2 ([BBFP]). If π contains a block with three or more

elements, then the associated permutation would show the forbidden pattern

3− 21, against the hypothesis. So π is a Motzkin noncrossing partition. On

the other hand, if π ∈ MNC(n), then the associated permutation avoids

the pattern 31 − 2. Moreover, if π contains a pattern 3 − 21 in the entries

πi, πk, πk+1, then necessarily πk−1 < πk, otherwise π would have a block

with three elements. So the entries πi, πk−1 and πk are a pattern 3 − 12

which induces the presence in π of the forbidden pattern 31−2 (see [BFP]).

We conclude that π ∈ Sn(3− 21, 31− 2).

¤

To prove that the above bar-removing bijection between MNC(n) and

Sn(3 − 21, 31 − 2) is also an order-isomorphism, we just notice that such

a bijection is obtained by simply restricting the bar-removing isomorphism

between NC(n) and Sn(312) considered in [BBFP]. Therefore the following

theorem holds.

Theorem 4.2.2 Let (Sn(3−21, 31−2);≤) be the poset obtained by transfer-

ring the distributive lattice structure defined in 4.2.1 along the bar-removing

bijection. This is precisely the subposet induced on Sn(3− 21, 31− 2) by the

strong Bruhat order of the symmetric group Sn. Therefore Sn(3−21, 31−2)

is a distributive sublattice of Sn endowed with the strong Bruhat order.

An immediate consequence of the above theorem is stated in the follow-

ing, remarkable corollary.
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Corollary 4.2.1 For any n ∈ N, the Motzkin lattice Mn is isomorphic to

the lattice Sn(3− 21, 31− 2) with the strong Bruhat order.

We conclude this section by generalizing the bijection of Elizalde and

Mansour between D(3)
n and Mn. Denote by D(k)

n the set of Dyck paths of

length 2n having at most k− 1 consecutive down steps and by C[−k+2,1]
n the

set of paths of length n starting from the origin, ending on the x-axis, never

falling below the x-axis and using steps of the kind (1, j), for j ∈ {−k +

2,−k+1, . . . ,−1, 0, 1} (this notation is borrowed from [FP2]). Each path in

D(k)
n can be uniquely factorized using factors of type udj , for 0 ≤ j ≤ k− 1.

Therefore we can define a bijection analogous to f by mapping the factor

udj+1 into the step (1,−j), thus obtaining a path in C[−k+2,1]
n . Call fk such a

bijection (with this notation, clearly f = f3). Using an argument similar to

proposition 4.2.1, it is possible to show that fk is an order-isomorphism, for

any k ≥ 2. Moreover, from a general result proved in [FP2], each set of paths

C[−k+2,1]
n is a distributive lattice with the usual order. As a consequence, our

previous results on the order structure of paths, partitions and permutations

counted by Motzkin numbers can be extended as follows:

Proposition 4.2.3 For any k ≥ 2, the following distributive lattice struc-

tures are isomorphic:

1. C[−k+2,1]
n with the usual order on paths;

2. the set kNC(n) of noncrossing partitions of an n-set having blocks

of cardinality at most k − 1, endowed with the order inherited by the

Bruhat order of NC(n);

3. the set of generalized pattern avoiding permutations Sn(31−2, k−(k−
1)(k − 2) · · · 21) endowed with the strong Bruhat order.

When k tends to infinity, we get a bijection f∞ between Dyck paths of

length 2n and paths of length n using the unique positive step (1, 1) and any
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kind of negative step (1,−j). This latter class of paths will be called here

the class of Lukasiewicz paths. Observe that Lukasiewicz paths are usually

defined dually (in [BF] they correspond to our paths read from right to left),

anyway both enumerative results and order properties are not affected by

this slight change of notation. The above proposition translates into the fact

that the distributive lattices of Lukasiewicz paths are isomorphic to those

of Dyck paths, as well as to the Bruhat noncrossing partition lattices and

312-avoiding permutations with the strong Bruhat order.

From an enumerative point of view, we observe that for k = 2 we get the

sequence 1, 1, 1, . . ., for k = 3 we get the Motzkin numbers and for k = ∞
we get the Catalan numbers. Therefore the sequences obtained for a generic

k interpolate between the Motzkin and the Catalan numbers. A strikingly

similar result has been found in [BDPP2], where the authors use classes of

pattern avoiding permutations different from ours: it would be interesting

to relate the two approaches.

4.2.2 Schröder paths

In this section we try to find analogous results starting from the lattices of

Schröder paths.

A first attempt in this direction consists of reading Schröder paths as

special Motzkin paths, namely a Schröder path can be regarded as a Motzkin

path in which any set of consecutive horizontal steps has even cardinality.

From this point of view, we can consider a suitable restriction of the bijec-

tion of proposition 4.2.1. As a consequence of this approach, we obtain that

Schröder lattices are isomorphic to the lattices of Motzkin noncrossing par-

titions where any bunch of singletons made of consecutive integers has even

cardinality. Unfortunately, we have not been able to determine the set of

pattern avoiding permutations associated with the above subset of Motzkin

noncrossing partitions via the bar-removing bijection.
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Open problem 3. Find a set of patterns T such that Sn(T ) corresponds

to the set of Schröder paths of length n via a suitable restriction of the

bijection between Dyck paths and 312-avoiding permutations recalled in the

introduction.

A totally different approach consists of interpreting Schröder paths as

Dyck paths with bicoloured peaks. Denote by Dn the set of Dyck paths

of length 2n whose peaks can be coloured either white or black. There

is an obvious bijection between Dn and the set Sn of Schröder paths of

length 2n (just map white peaks into simple peaks, black peaks into a pair

of consecutive horizontal steps, and leave the remaining steps unchanged;

from this bijection, which has been considered in [Su], the identity Rn =
∑n

k=1 2kN(n, k) immediately follows). Thanks to this simple observation,

it is not difficult to find a suitable set of coloured noncrossing partitions in

bijection with Schröder paths.

Proposition 4.2.4 Denote by NC(n) the set of noncrossing partitions of

an n-set such that the maximum of the blocks can be either coloured white

or black. Then there is a bijection between Sn and NC(n).

Proof. Given a Schröder path, consider the associated bicoloured Dyck

paths and take the noncrossing partition determined by the classical bijec-

tion, taking care of colouring each element of the partition with the same

colour of the corresponding down step.

¤

An example illustrating the bijections connecting Sn, Dn and NC(n) for

n = 6 is given in figure 1.

The elements of NC(n) will be called Schröder noncrossing partitions.

From now on, in a Schröder noncrossing partition we will denote black ele-

ments using a horizontal bar, and we will simply call them coloured elements.
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12 3 5 6 4

Figure 4.7 The bijections connecting Sn, Dn and NC(n) for n = 6

Similarly to Dyck paths, Schröder paths can be endowed with a natural

partial order structure, and the obtained poset is again a distributive lattice

[FP2]. Here we only recall the covering relation: if U is a Schröder path,

then a path V covering it (U ¹ V ) is obtained either by:

• changing a pair du in U into a pair hh in V , or

• changing a pair hh in U into a pair ud in V . Note that, in this second

case, the replacement is possible only if the hh in U is followed by an

even number of h steps, otherwise the path V would not be a Schröder

path.

The natural order on Schröder paths of length 2n can be transferred to

NC(n) by means of the bijection of proposition 4.2.4. We have the following

theorem:

Theorem 4.2.3 (Characterization of coverings) Given two coloured non-

crossing partitions π, ρ ∈ NC(n), we have π ¹ ρ if and only if ρ is obtained

from π by either

1. unbarring a coloured element of π, or

2. moving the minimum of some block B of π into the block B̃ containing

the element β = max B + 1 only when β is not coloured; moreover:

(a) if β = max B̃, then keep β inside B̃ and bar it;

(b) if β 6= max B̃, then add the coloured block B = {β}.

Proof (sketch). We can proceed as we did in theorem 4.1 of [BBFP]

for the covering relation on NC(n), so we omit a detailed proof. However,
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it is worth noticing that the bijection between Sn and Dn implies that if

P,Q ∈ Dn are such that P ¹ Q, then Q is obtained from P by either

changing a black peak into a white peak or replacing a valley with a black

peak (observe that this last operation on valleys can be only performed when

the steps are both white).

¤

Example. Given the partition 5̄43|62|871|9̄ ∈ NC(n), there are precisely

four partitions covering it, which are 543|62|871|9̄ (5̄ has been unbarred),

5̄4|6̄32|871|9̄ (3 has been moved and 6 was the maximum of its block),

5̄43|6|7̄|821|9̄ (2 has been moved and 7 was not the maximum of its block)

and 5̄43|62|871|9 (9̄ has been unbarred). Note that the partition obtained

by moving 1 into the block containing 9̄ (i. e. the maximum of its block

plus 1) is not listed above, since 9̄ is coloured.

The area A(P ) of a Schröder path P can be derived from the Dyck

path P ′ obtained by replacing each double horizontal step with a coloured

peak. If C is the number of coloured peaks of P ′, then it is easily seen that

A(P ) = A(P ′) − C. Now, the rank of the associated Schröder noncrossing

partition π can be expressed by recalling the formula in [BBFP] for the

rank of a noncrossing partition. Denoting by π′ ∈ NC the (noncoloured)

noncrossing partition associated with π, we have

A(π′) =
k∑

i=1


|Bi|


2bi − 2

i−1∑

j=1

|Bj | − |Bi|






whence the rank of π is given by:

r(π) = A(π′)− c(π) ,

where c(π) is the number of coloured elements of π.

Following the lines of [BBFP], we now look for a suitable set of coloured

pattern avoiding permutations in bijection with both Schröder paths and
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Schröder noncrossing partitions. The study of the enumerative properties of

coloured pattern avoiding permutations has been pursued by several authors,

see for example [M]. The next result has been independently proved by Egge

[E] using algebraic arguments; here we propose a bijective proof, as well as a

presumably new order structure connecting a certain class of permutations

with Schröder paths and Schröder noncrossing partitions.

Theorem 4.2.4 Removing the vertical bars in Schröder noncrossing parti-

tions defines a bijection between NC(n) and the set Sn(21̄, 2̄1̄, 312, 3̄12), for

any n ∈ N.

Proof. Let π be a partition of NC(n). We show that π avoids the four

patterns 312, 2̄1̄, 21̄, 312.

If π′ denotes the associated permutation via the bar-removing bijection,

then it is known [BBFP] that π′ is a 312-avoiding permutation, since π is a

noncrossing partition (just recall the standard representation of partitions

given in the introduction).

Suppose that π′ contains 2̄1̄. Since in π only the maxima of the blocks

can be coloured, it means that π contains two maxima in decreasing order,

which is not possible due to our standard notation.

If π′ contains 21̄ in its elements a and b̄, with a > b̄, then, regarded as

elements of π, they belong to two different blocks and b̄ is the maximum of

its block. Then, considering b̄ and the maximum of the block containing a,

two maxima in decreasing order would appear in π, against the hypothesis.

Let us suppose that π′ contains a 3̄12 pattern in the elements ā, b and

c, with ā > c > b. Then, in π, b and c lie in two different blocks. Suppose

that ā is the maximum of the block containing b. Let d be the maximum

of the block containing c. Clearly d > a, since maxima are in increasing

order. The elements ā, b, c, d constitute a crossing being ā in the same block

of b, d in the same block of c and b < c < a < d. This is not possible
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since π ∈ NC(n). If ā is not the maximum of the block of b, the same

argument of the previous point can be repeated considering the maximum g

of the block containing b. So π′ is also a 3̄12-pattern avoiding permutation,

whence π′ ∈ Sn(21̄, 2̄1̄, 312, 3̄12).

Vice versa, given π′ ∈ Sn(21̄, 2̄1̄, 312, 3̄12), consider the partition π ob-

tained by inserting a vertical bar before each left-to-right maximum other

than the first one. In this way, the maxima of the blocks of π are precisely

the left-to-right maxima of π′. Moreover, the fact that π′ avoids the two pat-

terns 2̄1̄, 21̄ implies that the only elements of π which can be coloured are

the maxima of its blocks. Finally, the avoidance of the two patterns 312, 3̄12

forces the partition π to be both in standard notation and noncrossing.

¤

Remark. The above set of coloured pattern avoiding permutations clearly

coincides with Θn(2̄1̄, 21̄), where Θn is the set of coloured permutations of

length n avoiding any coloured version of the pattern 312 (and so |Θn| =

2nCn).

Using the above bar-removing bijection we can now transfer the order

structure of Schröder paths to the set Sn(21̄, 2̄1̄, 312, 3̄12). What we obtain

is clearly a distributive lattice; its covering relation is described in the next

proposition, whose proof is omitted.

Proposition 4.2.5 Given π, ρ ∈ Sn(21̄, 2̄1̄, 312, 3̄12), it is π ≺ ρ if and only

if ρ is obtained from π by either:

1. unbarring an element of π, or

2. interchanging the element a immediately preceding a left-to-right max-

imum of π with β + 1, where β is the left-to-right maximum before a,

and colouring β + 1; this last operation can be performed exclusively

when a and β + 1 are both unbarred.
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Example. The reader can reconsider the example presented at the end

of theorem 4.2.3: just delete the vertical bars and read the covering rules

according to the last proposition.

Remark. We recall that it is possible to define a notion of Bruhat order on

coloured permutations, as it is reported, for instance, in [BB]. Unfortunately,

the restriction of this Bruhat order to Sn(21̄, 2̄1̄, 312, 3̄12) does not match

our posets.

Open problem 4. Concerning the above remark, the Bruhat order

on Sn is defined in [BB] as the Bruhat order on the set of permutations

with ground set {1, . . . n, 1, . . . n}, where the elements are linearly ordered

as they are listed above (i.e., 1 < · · · < n < 1 < · · · < n). Is it possible

to find a suitable linear order on {1, . . . n, 1, . . . n} such that the resulting

Bruhat order on Sn coincides with our partial order?

Let π ∈ S; we denote by inv(π) the set of the inversions of π and nb(π)

the number of the unbarred entries of π. Then the following proposition

holds:

Proposition 4.2.6 The rank of an element π ∈ Sn(21̄, 2̄1̄, 312, 3̄12) is given

by

r(π) = 2|inv(π)|+ nb(π) . (4.7)

Proof. We proceed by induction.

If r(π) = 0, then π = 1̄2̄ . . . n̄ and inv(π) = ∅, nb(π) = 0, whence formula

(4.7) is true.

Suppose that r(π) = 2|inv(π)| + nb(π) for π ∈ Sn(21̄, 2̄1̄, 312, 3̄12) such

that r(π) = s. Let ρ be a permutation of Sn(21̄, 2̄1̄, 312, 3̄12) such that

π ¹ ρ, then r(ρ) = s + 1. We have to show that r(ρ) = 2|inv(ρ)| + nb(ρ).

There are two possibilities for ρ: ρ is obtained from π either by unbarring

an element or by interchanging the elements of a pattern 12 of π obeying
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condition 2 of proposition 4.2.5 to obtain a pattern 2̄1 in ρ (in this way ρ

has precisely one more inversion than π). In the first case inv(ρ) = inv(π)

and nb(ρ) = nb(π) + 1. Then,

r(ρ) = r(π) + 1 = 2|inv(π)|+ nb(π) + 1 = 2|inv(ρ)|+ nb(ρ) .

In the second case |inv(ρ)| = |inv(π)|+ 1 and nb(ρ) = nb(π)− 1. Then,

r(ρ) = 2|inv(π)|+nb(π)+1 = 2(|inv(ρ)|−1)+nb(ρ)+1+1 = 2|inv(ρ)|+nb(ρ) .

In both cases, formula (4.7) holds.

¤

4.2.3 Hints for further work

In this last section we propose some ideas to get a better insight into the

properties of the above considered order structures.

Given a Dyck path P of length 2n, it is very natural to consider the

Dyck path m(P ) obtained by reading P from right to left. So, for example,

if P = uuuuuddudduddd, then m(P ) = uuuduuduuddddd. The function m

maps Dn into itself, and it is clearly an involution which preserves the area,

therefore it is a rank-preserving involution. More precisely, m is an order-

isomorphism of Dn. Therefore, if we transfer m to NC(n) and Sn(312),

we obtain an order-isomorphism (still to be denoted m) of both the Bruhat

noncrossing partition lattice of order n and the set of 312-avoiding permuta-

tions of length n with the strong Bruhat order. The next proposition allows

to determine m(π) for any π ∈ NC(n). The translation of this result on

Sn(312) is straightforward.

Proposition 4.2.7 Let π = B1|B2| · · · |Bk ∈ NC(n).

Then m(π) = C1|C2| · · · |Ck ∈ NC(n) where |Ci| = max Bk−i+1 −maxBk−i

and maxCi =
∑k

j=k−i+1 |Bj |.
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Proof. First of all we observe that a noncrossing partition is uniquely

determined by the cardinalities and the maxima of its blocks.

Let P be the Dyck path associated with π. By definition, the partition

m(π) is obtained by numbering the down steps of P in decreasing order,

then labelling each of its up steps with the number of the down step it is

matched with and taking as blocks the sets of labels of consecutive sequences

of up steps. Now suppose that m(π) = C1|C2| · · · |Ck is written in standard

notation, as usual. Since the difference between the maxima of two consec-

utive blocks B and B′ of π represents the number of consecutive up steps

of P between the two sequences of down steps corresponding to B and B′,

it is clear that |Ci| = maxBk−i+1 − maxBk−i. Moreover, the maximum c

of a block of m(π) coincides with the number of down steps of P following

the up step corresponding to c, and so maxCi =
∑k

j=k−i+1 |Bj |.

¤

It is clear that an analogous involution can be defined also for Motzkin

and Schröder paths. As far as Motzkin paths are concerned, there are two

possible approaches. First, given a Motzkin path P ∈ Mn, one can read it

from right to left, so obtaining another Motzkin path of Mn. On the other

hand, one can restrict m to the set D(3)
n of Dyck paths of length 2n having

at most two consecutive down steps. In this way, the image of m is the set
(3)Dn of Dyck paths without three consecutive up steps. Anyway, both in

the Motzkin and Schröder case, it seems not too difficult to find results on

partitions and permutations analogous to the last proposition.

A much more difficult task consists of interpreting the bar-removing

bijection in an alternative way. More precisely, given a noncrossing parti-

tion π written in standard notation, we associate with it the permutation

obtained by reading each block of π as a cycle. For instance, the partition

543|62|871|9 is mapped into the permutation (543)(62)(871)(9). It is evident
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that the permutations obtained in this way have a special cycle structure

[MacC]; it would be interesting to see if such a structure can be expressed

in terms of (possibly generalized) pattern avoidance. Moreover, transferring

to this set of permutations the order structure of Dyck paths leads to a new

partial order on permutations, whose properties are probably worth being

investigated.

We point out that the above map from noncrossing partitions to permu-

tations written in cycle form has already been considered in [MacC], where

the author describes the partial order obtained in Sn by transferring the

refinement order of NCn.



Chapter 5

About the generation of

combinatorial objects

This chapter contains some hints which could be developed in order to inves-

tigate on the generation of pattern avoiding permutations. More precisely,

starting from a succession rule for the Catalan numbers (which enumerate

the permutations avoiding a pattern of length three), we define a procedure

encoding and listing the objects enumerated by these numbers such that

two consecutive codes of the list differ only for one digit (Section 5.1). Gray

code we obtain can be generalized to all the succession rules with the stabil-

ity property : each label (k) has in its production two labels c1 and c2, always

in the same position, regardless of k. Because of this link, we define Gray

structures the sets of those combinatorial objects whose construction can

be encoded by a succession rule with the stability property. This property

is a characteristic that can be found among various succession rules, as the

finite, factorial or transcendental ones. We also indicate an algorithm which

is a very slight modification of the Walsh’s one, working in a O(1) worst-case

time per word for generating Gray codes.

Subsequently (Section 5.2), we propose a procedure to generate all Dyck

paths of length n. The CAT generation algorithm we deduce formalizes a
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method for the exhaustive generation of these paths which can be described

by two equivalent strategies of construction, based on the ECO method. A

very slight modification of our procedure allows to extend it to the generation

of other paths (Grand Dyck and Motzkin paths). We think that a similar

approach can be used also for the permutations avoiding one pattern or

other classes of permutations. The first idea in this sense could be to use

the bijection between Dyck paths and 312-avoiding permutations (se Section

4 or [Si]).

5.1 A general exhaustive generation algorithm for

Gray structures

5.1.1 Introduction

The matter of encoding and listing the objects of a particular class is com-

mon to several scientific topics, ranging from computer science and hardware

or software testing to chemistry, biology and biochemistry. Often, it is very

useful to have a procedure for listing or generating the objects in a partic-

ular order. A very special kind of list is the so called Gray code, where

two successive objects are encoded in such a way that their codes differ as

little as possible (see below for more details and [Wa]). There are many

applications of the theory of Gray codes for several combinatorial objects,

involving permutations [J], binary strings, Motzkin and Schröder words [V2],

derangements [BV], involutions [Wa1], P -sequences [V1]. They are also used

in other technological subjects as circuit testing, signal encoding [Lud], data

compression and other (we refer to [BBGP] for an exhaustive bibliography

on the general matter).

The generation of a Gray code is often strictly connected with the nature

of the objects which we are dealing with. So, it seems to have some impor-

tance the definition of a Gray code for the objects of the classes with some
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common characteristic, as the classes enumerated by the same sequence.

From the idea of [BBGP], which we briefly recall in the sequel, in this work

we develop a procedure for listing the objects of those structures whose

exhaustive generation can be encoded by particular succession rules (see be-

low), say succession rules satisfying the stability property (see Section 5.1.5).

In order to point out the relation between such structures and the possibility

to list their objects in a Gray code, we define them Gray structures.

Our discussion moves from the well known succession rule ΩC ,

ΩC :





(2)

(k) Ã (2)(3) . . . (k)(k + 1), k ≥ 2

defining the sequence of Catalan numbers and whose first levels of the re-

lated generating tree are shown in Figure 5.1. Each object x with size n

corresponds to a node at level n − 1 (being the root of the tree at level

0, corresponding to the object of size 1) and can be described by a word

w = w1w2 . . . wn encoding the path from the root to the node corresponding

to x: each wi is the label of a node of the path and is generated by ΩC . In

[BBGP] the authors give a method to exhaustively generate all the objects

(words) of a given size n which substantially coincide with the reading from

left to right in the (n − 1)-th level of the tree. So, the words at level 3 are

generated in the following order (see figure 5.1):

2222, 2223, 2232, 2233, 2234, 2322, 2323, 2332, 2333, 2334, 2342, 2343, 2344, 2345.

In the above list it is possible that two consecutive words differ more than

one digits: for instance, 2223 and 2232 differing in two digits or 2234 and

2322 with three different digits. Our aim is to generate all the words of

length n (naturally without repetitions) in such a way that two consecutive

words differ only for one digit. Such a property is strictly related to the

concept of “Gray code”, which definition we relate can be found in [Wa].

Substantially, it can be summed up in the following: a Gray code is an

infinite set of word-lists with unbounded word-length such that the Hamming
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distance between any two adjacent words is bounded independently of the

word-length (the Hamming distance is the number of positions in which two

words differ). For a complete discussion on Gray codes we refer the reader

to the paper of T. Walsh [Wa].

In Section 5.1.2 an informal description of the used strategy for our pur-

pose is presented, referring to objects whose construction can be described

by ΩC . Then, in Section 5.1.3, a rigorous definition of the list (Definition

1) and a proof that it is a Gray code (Theorem 5.1.1) are given. Section

5.1.4 presents the application and the analysis to the particular case of Dyck

paths, enumerated by Catalan numbers. Finally, Section 5.1.5 generalizes

the construction of the Gray code to those objects whose generation can be

described by succession rules with the stability property. In that section, we

also present some examples of Gray structures.

5.1.2 The procedure

The strategy used in [BBGP] for listing the objects of size n corresponds to

a visit of all the nodes at level n−1 in the generating tree from left to right.

So, after the visit of a subtree Ti is completed, the path from the root to the

leftmost node of the successive subtree Ti+1 has at least two different nodes

with respect to those ones of the last path of the preceding subtree Ti. This

is due to the fact that the labels of the sons of a node are visited in the same

order they have in the production of the succession rule ΩC , where the list

of the successors of a label (k) is < 2, 3, . . . , k, k + 1 >.

For our purpose we must check that when a subtree has been completely

visited and if v is the last path generated in such a visit, then the successive

path w has only one different digit with respect to the digits of v. We now

illustrate the procedure we are going to use referring to Figure 5.1, where

the words of length 4 are generated.

The first object of the list is the word 2222, corresponding to the path
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2      3      2      3     4      2      3      2      3      4 2      3      4      5

2 3 2 3 4

2 3

2

2     3     2     3     4     2     3     2     3     4     2   3     4     5

2 3 2 3 4

2 3

2

2222
1°

2223
2° 2233

3°
2234

4°
2232

5° 2332
6° 2334

7°

2333
8° 2343

9°

2344
10°

2345
11°2342

12°2322
13°

2323
14°

Figure 5.1 First levels of the generating tree for Catalan numbers (upper figure);
generation of the words of length 4 (lower figure).
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from the root to the leftmost node at level 3 in the generating tree. Then,

in order to complete the visit of the current subtree, the second word is

2223. At this point, the next path in the list will have a different digit with

respect to the digits of 2223, which is not the last one: in order to respect

the above definition of Gray code, the third word in the list could be 2323

or 2233. The choice is determined by the leading idea that a successive

path w = aw2 . . . wn must have as much as possible the same edges of the

preceding path v = av2 . . . vn in the list and if vj and wj are the first nodes

necessarily different in v and w, then all the nodes vr and wr must have the

same labels for r = j + 1, . . . , n − 1, n, in order to respect the Gray code

definition. So, the third word is 2233. The fourth and the fifth one are 2234

and 2232, respectively. From the generation of these last two words we can

deduce that only the last digit is changed when a same subtree is visited

and that the order for changing the last digit is shifted with respect to the

classical one in a cyclic way in order to complete the set of the sons of the

second-last digit: for the sake of clearness in this case the shifted list of the

successors of the second-last digit 3 is < 3, 4, 2 >, while the classical one

would be < 2, 3, 4 >. This fact can be generalized. Let e be the first path of

a new subtree and let i and k be the the last and the second-last digit of e,

respectively (i 6= 2, see below). Then the right order for changing the last

digit is < i, i + 1, . . . , k, k + 1, 2, 3, . . . , i− 1 >.

The sixth path which is now generated is f = 2332, according to the

above leading idea. Note that the second digit is changed with respect of

the second digit of the fifth word and that the third and the fourth digits

in f are the same you find in 2232. The word f is the first path of a new

subtree and then only the last digit has to be changed, till the whole set

of the sons of the second-last digit 3 is completed. Since the last digit of f

is 2, one could think that in this case the shifted production of the digit 3

coincides with the classical production < 2, 3, 4 >, obtaining that the 6-th,
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7-th and 8-th words are 2332, 2333, 2334, respectively. But so doing the

procedure fails when it is used to list the words of length 6, as the reader

can easily check when he arrives at the generation of the word 234565. The

reason of the failure will be clear in the next section, where the rigorous

formalization of our procedure is presented. The right way for changing the

last digit of f is to consider the list < 2, 4, 3 > of the sons of the digit 3,

then obtaining the 6-th, 7-th and 8-th words as follows: 2332, 2334 and

2333, respectively. This fact suggest us that if f is the first word of a new

subtree, if its last digit is 2 and if k is its second-last digit, then the right

order for changing the last digit is < 2, k + 1, k, k− 1, k− 2, . . . , 4, 3 >. The

remaining objects can be now easily obtained, as in Figure 5.1.

We now summarize the definition of the shifted production which is used

to change the last digit in the words. Let v = v1v2 . . . vn be the first path

of a new subtree. Let k and i be the second-last and the last digit of v,

respectively, then the list s(k, i) of the sons of k such that the first son is i,

is: 



s(k, 2) =< 2, k + 1, k, k − 1, . . . 4, 3 >

s(k, i) =< i, i + 1, . . . , k − 1, k, k + 1, 2, 3, . . . , i− 1 > .

5.1.3 A Gray code for Catalan structures

First we define the lists for the objects whose generating tree can be de-

scribed by the succession rule for the Catalan numbers we presented in the

previous section, then we will prove (Theorem 5.1.1) that these lists form

a Gray code, in the sense of the definition in Section 5.1.1. The following

notation is used:

• Lk = list of the codes of the objects of length k;

• lki = i-th element of Lk;

• |Lk|= cardinality of Lk;
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• if x is a sequence of digits, then −→x is the rightmost digit of x;

• Θ is the concatenation of lists;

• if L is a list, then:

– first(L) denotes the first element of the list L;

– last(L) denotes the last element of the list L;

– x ◦ L is the list obtained by pasting x with each element of L.

Our definition is a recursive definition and it is based on a generation of

sublists with increasing length:

Definition 1 The list Ln of all the elements of length n is




L1 = < 2 >

Ln = ΘM
i=1 Li

n if n > 1

where M = |Ln−1| and Li
n is defined by





L1
n = ln−1

1 ◦ s(2, 2)

Li
n = ln−1

i ◦ s(
−−→
ln−1
i ,

−−−−−−−→
last(Li−1

n )) if i > 1 .

The list L1
n is obtained by linking together the first element of the list of the

objects of size n−1 (i.e. ln−1
1 ) with the elements of the list s(2, 2) = < 2, 3 >;

then L1
n has always two elements: ln−1

1 2 and ln−1
1 3. The next lists Li

n with

i > 1 are obtained as follows:

• consider the i-th element of Ln−1 (i.e. ln−1
i );

• consider the list of the successors of the rightmost digit of ln−1
i shifted

starting from the rightmost digit of the rightmost element of Li−1
n (i.e.

s(
−−→
ln−1
i ,

−−−−−−−→
last(Li−1

n )));

• paste ln−1
i with each element of the list s(

−−→
ln−1
i ,

−−−−−−−→
last(Li−1

n )).
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Let us construct for instance the list L4:

L1 =< 2 >;

L1
2 = 2 ◦ s(2, 2) = 2◦ < 2, 3 >=< 22, 23 >, then

L2 =< 22, 23 >;

L1
3 = 22 ◦ s(2, 2) = 22◦ < 2, 3 >=< 222, 223 >;

L2
3 = 23 ◦ s(3, 3) = 23◦ < 3, 4, 2 >=< 233, 234, 232 >, then

L3 =< 222, 223, 233, 234, 232 >;

L1
4 = 222 ◦ s(2, 2) = 222◦ < 2, 3 >=< 2222, 2223 >;

L2
4 = 223 ◦ s(3, 3) = 223◦ < 3, 4, 2 >=< 2233, 2234, 2232 >;

L3
4 = 233 ◦ s(3, 2) = 233◦ < 2, 4, 3 >=< 2332, 2334, 2333 >;

L4
4 = 234 ◦ s(4, 3) = 234◦ < 3, 4, 5, 2 >=< 2343, 2344, 2345, 2342 >;

L5
4 = 232 ◦ s(2, 2) = 232◦ < 2, 3 >=< 2322, 2323 >, then

L4 = < 2222, 2223, 2233, 2234, 2232, 2332, 2334, 2333, 2343,

2344, 2345, 2342, 2322, 2323 >

We now prove the following:

Theorem 5.1.1 Two consecutive elements of the list Ln differ only for one

digit.

Proof. We can proceed by induction on n:

base: if n = 1, then the theorem is trivially true since L1 =< 2 >;

inductive hypothesis: let us suppose that ln−1
i and ln−1

i+1 , with 1 ≤ i ≤
|Ln−1| − 1, differ only for one digit;
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inductive step: the list Ln is obtained by linking together the lists Li
n for

i = 1, . . . , |Ln−1|. Since the elements of each list Li
n differ only for one

digit by construction, we must prove the statement only for last(Li
n)

and first(Li+1
n ), with 1 ≤ i ≤ |Ln−1| − 1.

Let J be the last element of s(
−−→
ln−1
i ,

−−−−−−−→
last(Li−1

n )). Then we have:

last(Li
n) = ln−1

i J .

We also have:

Li+1
n = ln−1

i+1 ◦ s(
−−→
ln−1
i+1 ,

−−−−−→
last(Li

n)) = ln−1
i+1 ◦ s(

−−→
ln−1
i+1 , J) .

From the definition of the shifted list of the successors we deduce that

the first element of a list s(i, k) is always k, then:

first(Li+1
n ) = ln−1

i+1 J .

Since ln−1
i and ln−1

i+1 differ only for one digit by the inductive step, this

statement holds also for last(Li
n) and first(Li+1

n ). So, the theorem is

proved.

¤

At this point it is easily seen that
−−−−−−−−→
first(Li+1

n ) is a son of the second-last

digit of first(Li+1
n ) and that

−−−−−−−−→
first(Li+1

n ) =
−−−−−→
last(Li

n). We remark that it is

not possible that
−−−−−→
last(Li

n) does not belong to the set of sons of the second-

last digit of first(Li+1
n ), since from the definition of the shifted production,

the construction we described above and the axiom of ΩC (which is 2), we

deduce that
−−−−−→
last(Li

n) ∈ {2, 3}, which are present in the production of each

possible label.
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The algorithm to generate Ln

The aim is defining an algorithm which is not recursive for generating all

the words of length n encoding the objects of size n. We base our procedure

on the general idea that if a word cj has been generated, then a single digit

must be changed to generate the next word cj+1, as the authors made in

[BBGP].

The first word of the list is w = 222 . . . 2, where wi = 2, for i = 1, 2, . . . n.

The digit wi to be modified at each step is determined using the algorithm

of Walsh [Wa], i.e. using a (n + 1)-dimensional array e, which is updated

in such a way that, at each step, en+1 points to wi. Once wi is determined,

it can not be modified by simply increasing it by one [BBGP], but the

definition of the shifted production must be taken in account. So, we use

another array d (n-dimensional), which is defined as follows: di = 0 if wi is

modified according to the shifted production s(k, 2); di = 1 if wi is modified

according to s(k, 3). It is easy to prove that the introduction of the array

d does not exchange the complexity of the recalled procedure of Walsh for

generating Gray codes in O(1) worst-case time per word [Wa]: his clever

algorithm remains the starting point for the implementation of our method.

We note that d can also be used to establish when wi is no more mod-

ifiable: from the definition of s(k, j) it happens if (di = 0 ∧ wi = 3) or if

(di = 1 ∧ wi = 2).

The generating procedure stops when the digit to be modified is w1.

5.1.4 The case of Dyck paths

We consider now the specific class of Dyck paths. Each of them can be

associated with a binary string according to the substitution, for example, of

the up steps with the 1 bit and the down steps with 0. Let us consider a word

of length n of the Gray code defined in Section 5.1.3. It has a correspondent

Dyck path which, in turn, is associated with a binary string, both of length
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2n (in Section 5.1.4 we present an algorithm to directly translate a word in

the associated binary string). We want to prove that, if we consider two

consecutive binary strings corresponding to two consecutive words in the

Gray code, they differ only for two bits (note that the Hamming distance

between two binary strings encoding two Dyck paths is at least 2). For this

aim we base on the ECO construction of Dyck paths [BDPP1]. We recall

briefly its main features: if p is a Dyck paths of length 2n with the last

descent of k steps, then it has k + 1 active sites; we obtain each of its k + 1

sons by inserting a peak in each active sites; the insertion of a peak in an

active sites at hight h generates a Dyck path with h + 2 active sites. Now

we state the next proposition:

Proposition 5.1.1 Two words of the Gray code differing for one digit cor-

respond to binary strings which differ only for two bits.

Proof. The last digit of a word denotes the number of active sites of the

corresponding Dyck path, so if it is k, then the path has k − 1 down steps

in the last descent, according to the above mentioned ECO construction.

A Let us consider the case when the two words differs in the last digit. Let

their codes be:

w1w2 . . . wiwi+1

and

w1w2 . . . wizi+1.

We indicate a generic bit with the star ∗, so w1 . . . wi corresponds to

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

000 . . . 0︸ ︷︷ ︸
wi−1

.

The adding of wi+1 corresponds to the insertion of a peak at height

wi+1−2 in the last descent of the Dyck path associated to w1w2 . . . wi.
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So, the corresponding binary string is

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

00 . . . . . . . . . 0︸ ︷︷ ︸
(wi−1)−(wi+1−2)

1 00 . . . 0︸ ︷︷ ︸
wi+1−1

= 1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

00 . . . 0︸ ︷︷ ︸
wi−wi+1+1

1 00 . . . 0︸ ︷︷ ︸
wi+1−1

(5.1)

(note that after the adding of wi+1, the total number of bits is properly

2i + 2). In particular we have:

• in the case wi+1 = wi +1, when the peak is inserted in the active

site with maximal height, the binary string becomes

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

1 00 . . . 0︸ ︷︷ ︸
wi

,

in other words, the last ascent is longer than one step with respect

to the Dyck path codified by the word w1w2 . . . wi;

• in the case wi+1 = 2, when the peak is added at height 0 at

the end of the Dyck path corresponding to w1w2 . . . wi,the binary

string is

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

00 . . . 0︸ ︷︷ ︸
wi−1

10.

In a similar manner, the addition of zi+1 after wi transforms the cor-

responding binary string in

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

00 . . . 0︸ ︷︷ ︸
wi−zi+1+1

1 00 . . . 0︸ ︷︷ ︸
zi+1−1

.

Let us suppose that zi+1 = wi+1 + j, where j can also assume negative

values. If j > 0, then j ∈ {1, wi + 1 − wi+1}; if j < 0, then j ∈
{−1, 2 − wi+1}. The word w1w2 . . . wizi+1 corresponds to the binary

string

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

00 . . . 0︸ ︷︷ ︸
wi−wi+1+1−j

1 00 . . . 0︸ ︷︷ ︸
wi+1−1+j

(5.2)

The difference between the words (5.1) and (5.2) is the location of the

rightmost 1 bit, which in (5.2) is shifted of |j| positions towards left
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(j > 0) or right (j < 0) with respect to (5.1). It easily seen that the

two strings differ only for the two bits in position wi+1 and wi+1 + j

from the right of the word.

B Let us consider now the case when the two words differ for two digits

which are not the last ones:

w1w2 . . . wiwi+1wi+2 . . . wn (5.3)

and

w1w2 . . . wizi+1wi+2 . . . wn. (5.4)

The associated binary strings after the insertion of wi+2 (i.e. the

binary strings coding w1 . . . wiwi+1wi+2 and w1 . . . wizi+1wi+2) are

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

00 . . . 0︸ ︷︷ ︸
wi−wi+1+1

1 00 . . . 0︸ ︷︷ ︸
wi+1−wi+2+1

1 00 . . . 0︸ ︷︷ ︸
wi+2−1

and

1 ∗ ∗ . . . ∗ ∗1︸ ︷︷ ︸
2i−wi+1

00 . . . 0︸ ︷︷ ︸
wi−wi+1+1−j

1 00 . . . 0︸ ︷︷ ︸
wi+1−wi+2+1+j

1 00 . . . 0︸ ︷︷ ︸
wi+2−1

.

where, as in the preceding case, zi+1 = wi+1 + j. The insertions of the

next digits wk with k = i+3, . . . , n, which are equal in the two words,

modify in the same way the last descent in the associated Dyck paths.

Then, the difference between the two binary strings corresponding to

them is not due to these insertions. So, also in this case, the binary

strings related to (5.3) and (5.4) differ only for two bits.

¤

From a binary string to the next one

The structure of the above proof can be used to derive an algorithm to

generate a binary string ph+1 from the preceding one ph, taking into account
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the generation order of the corresponding words in the Gray code. If uh and

uh+1 are two consecutive words in the Gray codes and ph is the binary string

corresponding to uh, then:

• if uh and uh+1 differ in the last digit and j = −−→uh+1−−→uh is the difference

between these ones, then ph+1 is obtained from ph by the shifting of |j|
positions of the rightmost 1 bit towards left if j > 0 or right if j < 0;

• if uh and uh+1 differ in the i-th digit and j is the difference between

the i-th digit of uh+1 and the i-th digit of uh, then ph+1 is obtained

from ph by the shifting of |j| positions of the second rightmost 1 bit

towards left if j > 0 or right if j < 0.

The correctness of the above procedure can be easily checked and the algo-

rithm is based on the proof of the preceding proposition.

From the word to the binary string

The proof of Proposition 5.1.1 suggests also the idea for an inductive al-

gorithm which allows to derive the binary string corresponding to a given

word in the Gray code. Let us suppose we have already encoded a word

w1 . . . wn−1 in the binary string u. The adding of a new digit wn modifies

only the final part of u, as we can deduce from the first part of the proof

of Proposition 5.1.1. In particular, the wn−1 − 1 rightmost 0 bits of u cor-

responding to the last descent of the related Dyck path, are replaced by

wn−1 + 1 bits as in the following:

000 . . . 0︸ ︷︷ ︸
wn−1−1

−→ 000 . . . 0︸ ︷︷ ︸
wn−1−wn+1

1 000 . . . 0︸ ︷︷ ︸
wn−1︸ ︷︷ ︸

wn−1+1

It correspond to the adding of a peak in some site of the last descent of the

Dyck path related to u.

Then, starting from the binary string 10 encoding the minimal Dyck path

whose relating word in the Gray code is 2, it is possible to get the binary
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string corresponding to w1 . . . wn from the knowledge of that one related to

w1 . . . wn−1 by means of the following inductive procedure:

base: the binary string corresponding to the word 2 is 10;

inductive hypothesis: assume that u is the binary string codifying w1 . . . wn−1;

inductive step: then the binary string corresponding to w1 . . . wn is ob-

tained replacing the wn−1 − 1 rightmost 0 bits of u with the wn−1 + 1

bits 000 . . . 0︸ ︷︷ ︸
wn−1−wn+1

1 000 . . . 0︸ ︷︷ ︸
wn−1

.

In the following example the encoding of the word 2334 is shown:

10 → 1100 → 110100 → 11011000

(2) (23) (233) (2334)

¤

Note. The algorithm of Section 5.1.4 allows to find a binary string ph+1

starting from the preceding one pj and the words uh and uh+1 of the Gray

code, corresponding to ph and ph+1, respectively. The algorithm of this

section, whereas, generates the binary string from the corresponding word

by means of an inductive procedure which can turn out too heavy for large

values of n (the length of the word).

Hence, the preceding algorithm, having a low complexity, can be used

to generate ph+1 in the case the string ph and the words uh and uh+1 are

known.

5.1.5 Generalization to stable succession rules

The crucial point in the construction of the lists Ln is that each label k in

the succession rule ΩC has in its production the two labels 2 and 3, as we

pointed out at the end of Section 5.1.3. This property, together with the
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definition of the shifted production of k, allows last(Li
n) and first(Li+1

n ) to

be different only for one digit (which is not the last one). Starting from this

remark, we generalize the procedure to define the Gray code to all those

succession rules having a particularity similar to ΩC which we would like to

call stability property, meaning with this name that in each production of k

we always find two labels, say c1 and c2, regardless of k.

Definition 2 (stability property) We say that a succession rule Ω

Ω :





(a)

(k) Ã (e1(k))(e2(k)) . . . (ek(k)) , k ∈ N
is stable if for each k there exist two indexes i, j (i < j) such that ei(k) = c1

and ej(k) = c2 (c1 ≤ c2).

We need also to extend the definition of shifted production for the la-

bels of succession rules with the stability property, in order to obtain that

each list of successors of any k ends with c1 or c2. We have the following

generalized shifted productions of k, being ei(k) = c1 and ej(k) = c2:



s(k, c1) =< c1, ei−1(k), . . . , e1(k), ek(k), . . . , ej+1(k), ej−1(k), . . . , ei+1(k), c2 >

s(k, c2) =< c2, ej+1(k), . . . , ek(k), e1(k), . . . , ei−1(k), ei+1(k), . . . , ej−1(k), c1 > .

In Figure 5.2 we used two walks, very similar to the factorial walks on the

integer half-line [B et al.], to visualize the generalized shifted production

of k, the above one starting from c1 and ending in c2 (corresponding to

s(k, c1)) and the below one starting from c2 and ending in c1 (corresponding

to s(k, c2)).

Now, it is easy to prove that:

Proposition 5.1.2 If Ω is a succession rule with the stability property, then

the lists Ln defined by:




L1 = < a >

Ln = ΘM
i=1 Li

n if n > 1
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Figure 5.2 Generalized shifted production.

where M = |Ln−1| and Li
n is defined by





L1
n = ln−1

1 ◦ s(
−−→
ln−1
1 , c1)

Li
n = ln−1

i ◦ s(
−−→
ln−1
i ,

−−−−−−−→
last(Li−1

n )) if i > 1

form a Gray code in the sense of the definition of Section 5.1.1, where two

consecutive words of length n differ for one digit (Hamming distance equals

to one).

The proof is completely similar to that one of Theorem 5.1.1 and it is

omitted.

Note that in the special case i = 1, j = 2 the generalized shifted pro-

duction is:




s(k, c1) =< c1, ek(k), ek−1(k), . . . , e3(k), c2 >

s(k, c2) =< c2, e3(k), . . . , ek(k), c1 > .

We now analyze some particular cases of succession rules with the sta-

bility property.
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Example 1. Let us consider the following rule ΩFo ,

ΩFo :





(2)

(2) Ã (2)(3)

(3) Ã (2)(3)(3) ,

defining the odd Fibonacci numbers. It is easily seen that it satisfies the

stability property, but the rule ΩF ,

ΩF :





(2)

(2) Ã (1)(2)

(1) Ã (2) ,

defining Fibonacci numbers, does not satisfy the stability property. This is

to say that such a property is not common to all the succession rules of a

certain family (finite succession rules, in this case).

In the following examples it is shown that a similar behavior can be

found also in factorial or transcendental rules.

¤

Example 2. The factorial rule:

ΩM :





(1)

(k) Ã (1)(2) . . . (k − 1)(k + 1) ,

defining the sequence of Motzkin numbers, does not satisfies the stability

property, since only for k ≥ 3 each label has c1 = 1 and c2 = 2 in its

production. But the rules ΩA of kind

ΩA :





(a)

(k) Ã (a)(a + 1) . . . (k)(k + 1)(k + d1) . . . (k + dm)

(with a ≥ 2, m = a − 2, di ≥ 0 and di ≤ di+1) are factorial and stable

rules, with i = 1, j = 2, c1 = a and c2 = a + 1. The following well-known
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succession rule Ωt, related to the Gray structure of the t-ary trees [BDP], is

a particular case:

Ωt :





(t)

(k) Ã (t)(t + 1) . . . (k − 1)(k)(k + 1) . . . (k + t− 2)(k + t− 1)

and the generalized shifted production is:




s(k, t) =< t, k + t− 1, k + t− 2, . . . , k + 1, k, k − 1, . . . , t + 2, t + 1 >

s(k, t + 1) =< t + 1, t + 2, . . . , k − 1, k, k + 1, . . . , k + t− 2, k + t− 1, t > .

In the following, we present the construction of the list L3 in the case t = 3

in the above succession rule Ωt.

L1 =< 3 >;

L1
2 = 3 ◦ s(3, 3) = 3◦ < 3, 5, 4 >=< 33, 35, 34 >, then

L2 =< 33, 35, 34 >;

L1
3 = 33 ◦ s(3, 3) = 33◦ < 3, 5, 4 >=< 333, 335, 334 >;

L2
3 = 35 ◦ s(5, 4) = 35◦ < 4, 5, 6, 7, 3 >=< 354, 355, 356, 357, 353 >;

L3
3 = 34 ◦ s(4, 3) = 34◦ < 3, 6, 5, 4 >=< 343, 346, 345, 344 >, then

L3 =< 333, 335, 334, 354, 355, 356, 357, 353, 343, 346, 345, 344 > .

If t = 2, then we find the succession rule ΩC for Catalan numbers, enumer-

ating, among other things, the binary trees. In [V] the author proposes a

constant time algorithm for generating binary trees Gray codes. We note

that our procedure, combined with the results of Section 5.1.4, is an alter-

native approach for this aim.

¤
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Example 3. Another particular case of ΩA is the following family:

Ωr :





(r)

(k) Ã (r)(r + 1) . . . (k)(k + 1)r−1 ,

with r ≥ 2. They satisfy the stability property, too, with i = 1, j = 2,

c1 = r and c2 = r + 1. If r = 3, then Ωr is the well-known succession rule

defining the sequence of Schröder numbers. The following rule Ωs also codes

the construction of Schröder paths, 2-colored parallelogram polyominoes,

(4231, 4132)-pattern avoiding permutations, (3142, 2413)-pattern avoiding

permutations [BDPP4, W2, W4] (these latter patterns are also considered

in [BBL] for pattern matching decision problem for permutations).

Ωs :





(2)

(k) Ã (3)(4) . . . (k)(k + 1)2

In this case it is c1 = 3, c2 = 4 and the associated shifted production is:




s(k, 3) =< 3, (k + 1)2, (k + 1)1, k, k − 1, . . . , 5, 4 >

s(k, 4) =< 4, 5, . . . , k, (k + 1)1, (k + 1)2, 3 > ,

where the indexes differentiate labels with the same value. Note that s(k2, ∗) =

s(k1, ∗) (∗ = 3 or 4). The construction of the list L3 is:

L1 =< 3 >;

L1
2 = 3 ◦ s(3, 3) =< 33, 342, 341 >, then

L2 =< 33, 342, 341 >;

L1
3 = 33 ◦ s(3, 3) =< 333, 3342, 3341 >;

L2
3 = 342 ◦ s(42, 41) =< 34241, 34251, 34252, 3423 >;

L3
3 = 34 ◦ s(4, 3) =< 343, 3452, 3451, 344 >, then
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L3 =< 333, 3342, 3341, 34241, 34251, 34252, 3423, 343, 3452, 3451, 344 > .

¤

Example 4. Succession rules of kind:

ΩB :





(r)

(k) Ã (b)l(a)(a + 1) . . . (k)(k + d1) . . . (k + dm)

(k) Ã (b)k if (k < a) ∧ (k ≤ l)

(k) Ã (b)(k−1)(a) if k < a ,

with l ≥ 2, b < a, m = a − l − 1, satisfy the stability property with i = 1,

j = 2 and, denoting bl = b1b2 . . . bl, c1 = b1, c2 = b2. A well-known particular

case is

ΩGD :





(2)

(2) Ã (3)(3)

(3) Ã (3)(3)(4)

(k) Ã (3)2(4) . . . (k)(k + 1)

which encodes a construction for Gran Dyck paths [PPR]. The generalized

shifted production associated is




s(k, 31) =< 31, k + 1, k, . . . , 4, 32 >

s(k, 32) =< 32, 4, . . . , k, k + 1, 31 > .

The list L3 is obtained as follows:

L1 =< 2 >;

L1
2 = 2 ◦ s(2, 31) =< 231, 232 >, then

L2 =< 231, 232 >;
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L1
3 = 231 ◦ s(31, 31) =< 23131, 2314, 23132 >;

L2
3 = 232 ◦ s(32, 32) =< 23232, 2324, 23231 >, then

L3 =< 23131, 2314, 23132, 23232, 2324, 23231 > .

¤

Example 5. It is possible to find some examples among the transcendental

succession rules which are stable or not. The classical rule defining the

factorial numbers, which describes the construction of the permutations of

length n by inserting the element n in any active site of any permutation

of length n − 1, is not stable (its production is: (k) Ã (k + 1)k). On the

contrary, the following one Ωp, defining the same sequence, is stable:

Ωp =





(2)

(2k) Ã (2)(4)(6) . . . (2k)(2k + 2)k .

Stability property is satisfied since each label (2k) generates in the first two

positions labels (2) and (4). The associated generalized shifted production

is:




s(2k, 2) =< 2, (2k + 2)k, (2k + 2)k−1, . . . , (2k + 2)1, 2k, 2k − 2, . . . , 4 >

s(2k, 4) =< 4, 6, . . . , 2k − 2, 2k, (2k + 2)1, (2k + 2)2, . . . , (2k + 2)k, 2 > ,

where the indexes are useful to distinguish different labels but with the

same value. In order to illustrate the combinatorial placement of Ωp we

propose a probably new ECO construction for the permutations which can

be described by this rule. Let π = π1π2 . . . πn be a permutation of Sn, we

define an operator ϑ : Sn −→ 2Sn+1 (the power set of Sn+1) working as

follows (n ≥ 1):
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• let π1 = k, then ϑ generates 2k permutations π′ ∈ Sn+1 which are

indicated by π′(i), with i = 1, 2, . . . , 2k;

• the entries of π′(i) are:

1. if i = 1, 2, . . . , k, then:

◦ π
′(i)
1 = i;

◦ the other entries are the same of π where the entry i is replaced

by n + 1.

2. if i = k + 1, k + 2, . . . , 2k, then:

◦ π
′(i)
1 π

′(i)
2 = (π1 + 1)j, where j = 1, 2, . . . , k;

◦ the other entries are obtained as follows:

– If π1 6= n, then let ρ be the sequence, with length n− 1,

obtained by π deleting π1 after it has been interchanged

with π1 + 1. The remaining entries of π′(i) are the same

of ρ where the entry j is replaced by n + 1.

– If π1 = n, then let ρ be the sequence obtained from π by

deleting π1. The remaining entries of π′(i) are the same

of ρ where the entry j is replaced by n.

Remark. permutations π′(i) with i = 1, 2, . . . , k start with an ascent, while

permutations π′(i) with i = k + 1, k + 2, . . . , 2k start with a descent.

It can be easily proved that if π′ ∈ Sn+1, then there exists a unique

π ∈ Sn such that π′ ∈ ϑ(π) (n ≥ 1), then operator ϑ satisfies Proposition

2.1 of [BDPP1], which ensures that the family of sets {ϑ(π) : π ∈ Sn}
is a partition of Sn+1, so that ϑ provides a recursive construction of the

permutations of S =
⋃

Sn.

In Figure 5.3 the action of ϑ on two different permutations of S6 (the first

one starting with an entry different from n = 6) is illustrated. Permutations
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π : 4 1 3 2 6 5
( ρ : 5 1 3 2 6 4 )

1 4 7 3 2 6 5
2 4 1 3 7 6 5
3 4 1 7 2 6 5
4 7 1 3 2 6 5

5 1 7 3 2 6 4
5 2 1 3 7 6 4
5 3 1 7 2 6 4
5 4 1 3 2 6 7

π : 6 3 1 2 5 4
( ρ : 6 3 1 2 5 4 )

1 6 3 7 2 5 4
2 6 3 1 7 5 4
3 6 7 1 2 5 4
4 6 3 1 2 5 7
5 6 3 1 2 7 4
6 7 3 1 2 5 4

7 1 3 6 2 5 4
7 2 3 1 6 5 4
7 3 6 1 2 5 4
7 4 3 1 2 5 6
7 5 3 1 2 6 4
7 6 3 1 2 5 4

Figure 5.3 The action of ϑ on two different permutations of S6.

π′(i), i = 1, 2, . . . , 2k generated by π by means ϑ are listed from the top to

the bottom, being π′(1) at the top.

5.1.6 Conclusions and further developments

It is possible to find a lot of succession rules satisfying the stability property,

but we are interested to the rules having some combinatorial relevance, as

the ones presented in the above examples. In this way, with our procedure

we are able to give a Gray code for the words (i.e. the paths whose nodes are

the labels in the generating tree) encoding combinatorial Gray structures,

i.e. those structures whose exhaustive generation can be described by a rule

satisfying the stability property, which is not, as we have seen, an infrequent

property.

Clearly, it would be better to have a Gray code for the objects instead

of their encodes. Nevertheless, as we stated in Section 5.1.1, our procedure

generates a Gray code which is not related to the nature of a particular

class of combinatorial objects. Moreover, in some case it could be possible

to translate the word of labels (the path in the generating tree) into the

corresponding object. A further effort in this sense could be the research of

algorithms for this translation in order to generalize the approach of Section

5.1.4 for Dyck paths. For this aim the ECO method can be useful, since by

means of it each code is associated to a single object of the structure.
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From the above examples it is possible to argue that the stability prop-

erty of a succession rule does not depend on its ”structural properties“ ,

which have been discussed by the authors in [B et al.]. In the light of this

fact, it is reasonable to ask if a stable succession rule can be considered as the

representative, say standard form, of a set of rules which are all equivalent

to it (two rules are said equivalent if they define the same number sequence

[BDPR]). This is to say that the equivalence problem for succession rules

could be amplified with respect to the investigation conducted in [BDPR]

where the authors analyze the equivalence problem for some different kinds

of rules: is it suitable the research of the set of rules equivalent to a stable

succession rule?

Moreover, it is evident that it is not the sequence defined by the rule that

induces it to be stable or not: factorial number sequence can be defined by a

stable or not stable rule, as showed in Example 5. Consequently, a problem

which naturally arises from this note is the existence of a succession rule with

the stability property for any given number sequence. A first concerning

question could be the following (to the authors knowledge the answer is

open): is there a stable rule defining Motzkin numbers?

5.2 An exhaustive generation algorithm for Cata-

lan objects

5.2.1 Preliminaries and notations

Here we give some notations we are going to use in the sequel, including

Dyck paths which are described in a little bit different way (more suitable

for our aim) with respect to Section 4.

We define path a sequence of points in N× N (they have never negative

coordinates) and step a pair of two consecutive points in the path. A Dyck

path is a path D := {s0, s1, . . . , s2n} such that s0 = (0, 0) and s2n = (2n, 0),
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having northeast (si = (x, y), si+1 = (x+1, y +1)) or southeast (si = (x, y),

si+1 = (x + 1, y − 1)) steps. The number of northeast steps is equal to the

number of southeast steps and we denote path’s length the number of its

steps. In particular, Dn is the set of Dyck paths with length 2n. In the

sequel, if D ∈ Dn, then it has size n. A peak (resp.valley) is a point si such

that step (si−1, si) is a northeast (southeast) and the step (si, si+1) is a

southeast (northeast); moreover, we say pyramid ph , ∀ h ∈ N, a sequence

of h northeast steps following by h southeast steps such that if (si, si+1)

is the first northeast step and (si+2h−1, si+2h) is the last southeast of this

sequence, then si = (x, 0) and si+2h = (x+2h, 0). We also define last descent

(ascent) the southeast (northeast) steps’ last sequence of a Dyck path and we

conventionally number its points from right (left) to left (right). Clearly the

last point of last descent always coincides with last point of last ascent (see

Figure 5.4). Moreover, if we say height h(si) of a point si its ordinate and

of last ascent

last ascent

and last ascent
last descent

last descent
first point of

last point ofsecond last point

first point of

Figure 5.4 Numeration of points of Dyck path’s last descendent and ascent.

non-decreasing point the extremity si+1 of a northeast step (si, si+1), then

we can define area of a path the sum of its non-decreasing points’ heights

and maxima area path Pn
max the pyramid pn that contains, in geometric

sense, all the paths of its size. Finally we call a path P “active” if we obtain

another Dyck path when the first and the last step of P are taken off. This

is equivalent to say that P does not have valleys with height h = 0.

Given a class of combinatorial objects C and a parameter γ : C −→
N+ such that Cn = {x ∈ C : γ (x) = n} is a finite set for all n, we

define a generating tree. We assume there is only one element of minimal
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size in C and we describe the recursive construction of this set by using a

rooted tree in which each node corresponds to an object. In particular, the

vertices on the nth level represent the elements of Cn, the root of the tree

is the smallest element and the branch, leading to the node, encodes the

choices made in the construction of the object. Starting from this idea and

choosing the combinatorial class D of Dyck paths, we introduce another kind

of generating tree which describe, fixed the size n, the recursive construction

of Dn. In the sequel we denote it with Dn-tree which clearly has a finite

number of levels and each object has the same size, regardless of the level.

5.2.2 Dyck paths

We define an operator which constructs Dn. Since the cases n = 1 and n = 2

are trivial, we assume n > 3.

1. Consider Pn
max like the first path.

2. Take off the first and the last path’s step and insert a peak in every

point of the obtained path’s last descent except for the last point.

Every insertion generates a new Dyck path.

3. For each new generated path repeat the following actions until active

paths are generated:

3.1 take off the first and the last path’s step

3.2 insert a peak in every point of the obtained path’s last descent.

Every insertion generates a new path.

In Figure 5.5 we give an example of θ operator’s action.

We prove that θ satisfies the following conditions:

Proposition 5.2.1

1. ∀ X1 , X2 ∈ θ(Pn
max), then X1 6= X2;



Chapter 5. About the generation of combinatorial objects 145

0

, ,

Figure 5.5

2. ∀ X1 , X2 ∈ Dn and X1 6= X2, then θ(X1) ∩ θ(X2) = ∅.

Proposition 5.2.2 ∀ Y ∈ Dn ∃ a finite succession X0, X1, . . . , Xk with

k ∈ N and Xk = Y such that :

• X0 = Pn
max;

• Xi+1 ∈ θ(Xi) 0 ≤ i ≤ k − 1.

Proof Proposition 5.2.1. We prove point 2 since point 1 of the proposition

is trivial. Consider X1 , X2 ∈ Dn, X1 6= X2 and divide both X1 and X2 in

two parts as shown in Figure 5.6.

1 b2a

21 X   :X   :

a 1 b 2

Figure 5.6

If b1 6= b2, they remain distinct after the application of θ since it operates

just on these parts. On the other hand if b1 = b2, then a1 6= a2 and after

the application of θ a1 and a2 remain different, then θ(X1) ∩ θ(X2) = ∅ in

both cases.

¤
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Proof Proposition 5.2.2. We consider a general path Y and we apply the

inverse of θ operator on it; clearly θ−1 operator takes off the righter peak of

Y and inserts a northeast step at the beginning of the path and a southeast

step at the end. We have two possibilities:

1. The last ascent of Y has only one step, so in the obtained path θ−1(Y )

the peaks’ number is reduced by one.

2. The last ascent of Y has at least two steps, so the number of last ascent’s

steps in θ−1(Y ) is reduced by one.

It is clear that after k times, for k ∈ N, the number of peaks in θ−k(Y ) is

one and θ−k(Y ) = Pn
max.

¤

Figure 5.7 D4-tree.

We now describe θ’s construction by using a rooted tree:
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Dn-tree ROOTED TREE

1. The root is Pn
max and it is at level zero;

2. if X ∈ Dn-tree is at level k ≥ 0 then Y ∈ θ(X) is a son of X and it is

at level k + 1.

In Figure 5.7 D4-tree is illustrated.

Theorem 5.2.1 Dn = Dn-tree

Proof. Given X ∈ Dn-tree; it is clear that X is a Dyck path. Moreover,

Proposition 5.2.1 assures there are not two copies of the same path in Dn-

tree ⇒ |Dn-tree| ≤ |Dn| ⇒ Dn-tree ⊆ Dn.

Vice versa given Y ∈ Dn, Proposition 5.2.2 assures that it is always possible

to find a finite succession which joins Pn
max path to Y ; so Y ∈ Dn-tree since

Pn
max is in Dn-tree ⇒ Dn ⊆ Dn-tree.

¤

Succession rule

We recall that, given a path P , it is θ(P ) 6= ∅ if and only if it is active, i.e.

if it has not valleys with height h = 0. Moreover, from the definition of θ

operator it is clear that the number of a path’s sons is equal to the number of

steps in its last descent. So, we have to label each path with an information

recording the number of its sons and the height of its lowest valley. We use

the following notation to connect the label of a parent P , having the height

of its lowest valley equal to i, with the labels of its k sons:

(k, i) ↪→ (c1)(c2) . . . (ck).

Moreover, each of these k paths has the last descent with length s, with

s = 1, 2, . . . , k. Now θ operator, after having taken off the first and the last

step of P , inserts a peak in one of the last descent’s point of the obtained
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path P . This insertion increases the number of valleys in the generated path

by one, with the exception of Y obtained by inserting the peak in the last

point of P ’s last descent, since in this case, the path has the same number of

valleys of its father P . Then, the height j of generated paths’ lowest valley

depends on the insertion of the peak. Indeed, if θ inserts the peak in the t-th

point of the P ’s last descent with 1 6 t 6 i−1, then j = t−1, i.e. the lowest

valley is generated by the peak insertion. On the other hand, if i 6 t 6 k,

then j = i− 1, i.e. the lowest valley is the same of P . In Figure 5.8 we give

an example of θ’s action on a path with label (3, 2). The production:

( 3 , 1 )

lowest valley

( 1 , 0 )

lowest valley

lowest valley

0

P :

lowest valley
i = 2

( 3 , 2 )

k = 3

( 2 , 1 )

, ,

Figure 5.8

(k, i) ↪→ (1, 0)(2, 1) . . . (i, i− 1)(i + 1, i− 1) . . . (k, i− 1).

We notice that the root ofDn-tree does not have valleys and the second index

of its label could be empty; nevertheless, we label the root by (n− 1, n− 1)

the same. Finally, the following succession rule is obtained:




(n− 1, n− 1)

(k, i) ↪→ (1, 0)(2, 1) . . . (i, i− 1)(i + 1, i− 1) . . . (k, i− 1)

The labels with i = 0 correspond to paths with at least a valley with height

h = 0 and they do not generate any other path by θ operator. In Figure 5.9

an example of generating tree for n = 5 is shown.
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(4, 4)

(2, 1)(3, 2)(4, 3)

(4, 1) (3, 1) (2, 1) (1, 0) (3, 1) (2, 1) (1, 0) (1, 0) (1, 0) (1, 0)(2, 0)(2, 0)(3, 0)(2, 0)

(1, 0)(2, 0)(1, 0)(2, 1)(3, 1)(1, 0)(2, 1)(3, 2)(4, 2)

(4, 0) (3, 0) (2, 0) (1, 0) (3, 0) (2, 0) (1, 0) (2, 0) (1, 0) (3, 0) (2, 0) (1, 0) (2, 0) (1, 0)

(1, 0)

Figure 5.9

The generating algorithm

In the previous section θ operator is described by a rooted tree and Dn’s

paths are generated according to the Dn-tree’s levels. Nevertheless, we wish

to find a method which sequentially lists the objects so that each one is

generated only by the last generated path. This operation corresponds to

visit all the nodes of Dn-tree and for this reason it’s helpful to order the

sons of X path according to the decreasing length of their last descent so

that the last one ends in p1. In particular, the last Pn
max’s son is made

by pn−1 followed by p1. We name “firstborn” of a path P the son which

has the longest last descent (In Figure 5.10 we give an example of a path’s

“firstborn”).

,

0

last son of P
path P firstborn of P

,

Figure 5.10

Clearly the “firstborn” of Pn
max can be generated simply overturning its

peak. Then we generate all “firstborn” paths on the longest branch of Dn-

tree applying (n− 2) times the following operation:
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op1: Take off the first and the last path’s step, then insert a peak in the

last point of the last descent (see Figure 5.11).

op1

op1

Figure 5.11

When op1 is no more applicable, i.e. when we arrive at a leaf, we proceed

to generate the leaf’s brothers following the order given at the beginning of

this subsection. So it is sufficient to apply the following operation on the

last generated path:

op2: Overturn the rightmost peak in the path (see Figure 5.12) since, if

op1 op2

op2

op1

Figure 5.12

Yi ∈ θ(X) with 1 6 i 6 k − 1 and k = |θ(X)|, then op2 (Yi) = Yi+1 ∈ θ(X).

Indeed, Yi+1 is generated from X by means of θ taking off the first and the

last step and inserting a peak in the (k− i + 2)th point of X’s last descent;

the generation of Yi+1 can be obtained also overturning the rightmost peak

in Yi.
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After the last son of X is generated, we should go back to the Dn-tree’s

preceding level, in other words we should pass to the immediately next

brother of X, if it exists. We use the following operation to generate the

“uncle” of last obtained path:

op3: Take off the rightmost p1; then insert a northeast step at the beginning

of the path and a southeast step in the second-last point of the last ascent

(see Figure 5.13).

op1

op3

op2

op2

op1

Figure 5.13

Op3 allows us to pass from a path ending in p1 to its “uncle”; this fact it’s

very important because we can pass to another subtree of Dn-tree, where

we can apply op1 and op2 again.

The effects of op3 on a path P ending in p1 are illustrated in Figure 5.14.

h

op3 ( P ) :P :

h

Figure 5.14

Let P the last son of a path Pi; the path Pi+1, Pi’s brother, is obtained

simply overturning its last peak (see Figure 5.15).

As we can see, the second path in Figure 5.14 is equivalent to Pi+1 so

op3 (P ) = Pi+1.
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h

i+1iP  :

h + 1

P     :

Figure 5.15

From their definition op1, op2 and op3 form a method to visit all the nodes

of Dn-tree and so, they generates all Dn paths.

We summarize the above arguments by means of the following algorithm:

Algorithm 1
start with Pn

max;

generate the firstborn son of Pn
max overturning its peak;

P := firstborn son of Pn
max;

while P 6= the last son of Pn
max do

if it’s possible then

P ′ := op1 (P )

else if it’s possible then

P ′ := op2 (P )

else

P ′ := op3 (P )

end if ;

P := P ′;

end while

Remark. Observing Figure 5.16 we can notice that it’s possible to have

more consecutive operations of the same kind but in particular we can have

at most two consecutive applications of op3. Indeed we can have only two

possibilities:

a) The path ends in p1 which is preceded by a peak with height
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op3

op2

op2

op2

op1

op1

op3

op2

op1

op3

op1

Figure 5.16

h ≥ 2

Op3 works only one time because its application, as we can see in

Figure 5.17, generates a path that has the last peak with height h

≥ 2.

h
( 3 )

h

Figure 5.17

b) The path ends in at least two p1

In this case the application of op3 generates a path that ends again

in p1; we are in case a) and the application of op3 is possible only
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another time (see Figure 5.18).

k

k > 1

k + 1
( 3 )( 3 ) k + 1

Figure 5.18

Analysis of Algorithm 1

Our aim is to realize a method which maintains constant the number of

mean operations while each object in Dn is generated. If we associate to

each path a binary word by coding with 1 a northeast step and with 0 a

southeast, then it’s clear that the three operations are characterized by a

constant number of actions which exchange steps in the path. Indeed, we

represent the word by a circular array where the last position is followed by

the first one; we introduce a pointer to the first position of the array which

always corresponds to the first step of the path (see Figure 5.19).

11 1 10 0 0 0

Figure 5.19

Op1 is equivalent to exchange the first bit 1 of the path with the first bit 0

of its last descent and then to move forward the pointer one position (the

action of op1 on the array is illustrated in Figure 5.20).

Op2 is equivalent to exchange the bits of the last sequence 10 in the array,

while the pointer doesn’t move (see Figure 5.21).

Finally, op3 is equivalent to exchange the bits of the last and second-last

pairs 10 and then to move backward the pointer one position (see Figure

5.22).
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0 11011 1

op1

w00 w 1

Figure 5.20

1 w010

op2

w 01 10

Figure 5.21 Action of op2 operation on the array.

It’s clear that the three operations require a constant number of actions

independently of the length of the paths and Algorithm 1 is a constant

amortized time (CAT) algorithm.

1 ww

op3

0 001 111010 0

Figure 5.22 How word of bits changes by op3.

5.2.3 Conclusions

The practical advantages of our method are that it uses directly the combi-

natorial objects and it generates all the paths ∈ Dn, with fixed n, without

using the objects with smaller size.

Our studies have proved that the basic idea of this algorithm allows to

obtain similar results for other classes of paths like Grand Dyck (Gn) and
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Motzkin (Mn) paths; indeed, it’s possible to obtain all the paths of Gn or

Mn using operations very similar to op1, op2 and op3.

Moreover, it is reasonable to think that this method could be applica-

ble to other kinds of paths or to other combinatorial classes which are in

bijection with the studied paths. For example we could study the classes

of polyominoes or permutations enumerated by Catalan, Motzkin or Grand

Dyck numbers (for definitions see for example.
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[FH] Z. Füredi, P. Hajnal Davenport-Schinzel theory of matrices, Dis-

crete Math. 104 (1992) 233-251.

[Ga] M. Gardner Curious properties of the Gray code and how it can be

used to solve puzzles, Scientific American 227 (2) (1972) 106-109.



BIBLIOGRAPHY 162

[Gi] S. Gire Arbres, permutations à motifs exclus et cartes planaires:
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son avec mots, cartes planaires et tableaux de Young, Ph. D. Thesis,
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