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Introduction

This work is placed in the area of the Combinatorics, which plays a
fundamental role in an ever and ever increasing number of �elds.

The problems which Combinatorics must face arise from, for example,
Theoretical Computer Science (average or worst case analysis of algorithms
and data structures [33, 34, 69], sorting problems [46, 64, 80], analysis of
regularities in words [16, 52], particular instances of pattern matching al-
gorithms optimization [ 20], decidability problems concerning tiling of the
plane [14, 24]), Mathematics (representations of symmetric group [36, 65],
basis of symmetric functions [37], etc.), Hydrogeology (representation of the
morphological structure of river networks [44, 75]), Anatomy (representation
of bronchial networks or arterial vessel [82]), Molecular Biology (theoretical
considerations about secondary structures of single nucleic acids [58, 77, 78]),
Botany [53], Neurophysiology [61] and Statistical Physics (percolation phe-
nomena [21]).

In general Combinatorics �nd application every time a phenomena can
be modelled by discrete structures.

Enumerative Combinatorics is one of the main area of Combinatorics,
its scope is counting the number of elements in a �nite set in an exact or
approximate way.

Let us consider a given classO of object, and a parameterp on this class,
p : O ! N, N being the set of non negative integers. We focus on the set
On of the elements ofO such that the value of the parameter is equal ton.
Enumerative Combinatorics answers the question to know the cardinality
f n of each setOn for all possible n.

The most satisfactory form of f n is a completely explicit closed formula
involving only well known functions, and free from summation symbols.
Only in a few case such a formula exists. A recurrence forf n may be given
in terms of previously calculated valuesf k , thereby giving a simple procedure
for calculating f n for any n 2 N.

Another method to evaluate f n is to give the formal power seriesf (x) =P
n f nxn which is said to be thegenerating function of the class of objectO,

according to the parameterp. Notice that the n-th coe�cient of the Taylor
series off (x) is just the term f n .

In enumeration problems the generating function of a class of objects
often appears as the solution of an equation, and it is classi�ed following the
type of the equation from which it rises from; that is, rational, algebraic,
di�erential, holonomic, etc.

A common approach to enumeration consists in searching for a construc-
tion of the class of objects under consideration and later of translating it
into a recursive relation, or an equation (usually calledfunctional equation)
satis�ed by the generating function of the objects.

Sch•utzenberger [68] developed a methodology which consists in codifying
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INTRODUCTION

the objects with words of a language such that the size of the objects cor-
responds to the to the length of the words of the language. If the language
is generated by an unambiguous context-free grammar, then it is e�ectively
possible to translate the productions of the grammar into a system of func-
tional equations whose solution is unique and is the generating function of
the words of the language.

Finally, The ECO method [12] is a unifying method for Enumerating
some classes of Combinatorial Objects, based on the recursive construction
of the objects of a given size realized by means a local expansions per-
formed on the objects of immediately lower size. Enumeration is not the
only role played by ECO method in Combinatorics, since it allows us to
perform exhaustive and random generation algorithms.Succession rulesare
a fundamental tool applied in the context of ECO method.

More recently, succession rules have been considered as remarkable ob-
jects to be studied independently from of their applications, and they have
been treated by several points of view. In [8], Banderier et al. explore in
detail the relationship between the form a succession rule and the related
generating function. Besides, some algebraic properties of succession rules {
represented in terms of arule operator { have been determined and studied
in [30].

Furthermore, some extensions of the concept of succession rule have been
proposed. In [31] are introduced the so calledjumping succession rules, while
in [25] the author presents marked succession rules. These extensions em-
power the \original" tool.

In order to point out the great versatility of succession rules we present
di�erent research areas in which succession rules can be applied to.

The �rst line of research presented in this thesis is related to pattern
avoidance, that is, strings over a given alphabet which can not contain a de-
termined substring. The study of this subject is interesting in many scienti�c
�elds.

In the area of computer network security, the detection of intrusions,
which are becoming increasingly frequent, is very important. Intrusion de-
tection is primarily concerned with the detection of illegal activities and ac-
quisitions of privileges that can not be detected with information ow and
access control models. There are several approaches to intrusion detection,
but recently this subject has been studied in relation to pattern matching
(see [1, 35, 48]).

In the area of computational biology it could be interesting to detect the
occurrences of a particular pattern in a genomic sequence over the alphabet
f A; G; C; T g, see for instance [63, 79].

These kinds of applications are interested in the study concerning both
the enumeration and the construction of particular words avoiding a given
pattern over a �xed alphabet.

If we consider the set of binary words without any restriction then the
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binary words avoiding a �xed pattern constitute a regular language and
can be enumerated by using classical results obtaining rational generating
functions (see, e.g., [40, 41, 45, 69]). When the restriction to words with no
more 0's than 1's is valid, the language of words avoiding a pattern is more
di�cult to deal with. For each forbidden pattern an \ad hoc" grammar
(from which the generating function can be obtained) should be de�ned.
Consequently, for each pattern a di�erent generating function enumerating
the words avoiding it must to be computed.

Our �rst aim is to determine an algorithmic uni�ed approach, based on
the concept of succession rule, for the construction and the enumeration,
according to the number of ones, of binary words inf 0; 1g� having the
number of 1's greater than or equal to the number of 0's, and which can
be applied to any forbidden pattern.

Moreover, we extend this approach to the class of binary words inf 0; 1g�

having the number of 1's greater than or equal to the number of 0's, and
avoiding a set of forbidden patterns. Surprisingly, the number of words avoid-
ing a set of forbidden patterns does not depend on the shape of the avoided
patterns themselves, but only on the number of ones in the patterns.

In the second line of research, succession rules are studied posing a spe-
ci�c relevance on their relationships with recurrence relations.

More recently, there have been some e�orts in developing methods to
pass from a recurrence relation de�ning an integer sequence to a succession
rule de�ning the same sequence - in this case we say that the succession rule
and the recurrence relation areequivalent.

It is worth mentioning that almost all studies realized until now on this
topic have regarded linear recurrence relations with integer coe�cients [19,
27]. Following Zeilberger [83], we will address to these asC-�nite recurrence
relations, and to the de�ned sequences asC-�nite sequences. One of the open
problems on this subject is the so calledPositivity Problem, that is, given a
C-�nite sequence f f ngn� 0, establish whether all its terms are positive.

This problem was originally proposed as an open problem in [17], and
then re-presented in [66] (Theorems 12.1-12.2, pages 73-74), but no general
solution has been found yet.

The positivity problem can be solved for a large class of C-�nite se-
quences, precisely those whose generating function is aN-rational series.
We also recall that the class ofN-rational series is precisely the class of
the generating functions of regular languages, and that Soittola's Theorem
[72] states that the problem of establishing whether a rational generating
function is N-rational is decidable.

Soittola's Theorem has recently been proved in di�erent ways in [19,
62], using di�erent approaches and some algorithms, to pass from anN-
rational series to a regular expression enumerated by such a series, have
been proposed [9, 47]. However, none of these techniques provides a method
to face C-�nite recurrence relations which are not N-rational.
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Following the attempt of enlightening some questions on positive se-
quences, some researches have recently focused on determining su�cient
conditions to establish the possible positivity of a given C-�nite recurrence
relation, as interestingly described in [38]. As a matter of fact, up to now,
we only know that the positivity problem is decidable for C-�nite recur-
rences of two [42] or three terms [49]. Another possible approach to tackle
the positivity problem is to develop algorithms to test positivity of recur-
sively de�ned sequences (and, in particular, C-�nite sequences) by means
computer algebra, as in [39].

Our work relates to the positivity problem, since we propose a su�cient
condition for testing the positivity of a C-�nite sequence.

If the recurrence relation has degreek with coe�cients a1; : : : ; ak , such
a condition can be expressed in terms of a set ofk inequalities which can
be obtained from a set of quotients and remainders involving by the coef-
�cients. To our knowledge, such a condition is completely new in literature
coming from a completely di�erent approach to tackle the problem.

A brief summary .

In Chapter 1 we de�ne the basic tools and objects used and studied in
this work.

In Chapter 2 we study particular strings over the alphabet f 0; 1g which
avoid a single pattern. Firstly, we propose a general algorithm constructing
such words and secondly we solve the enumeration problem by means of
generating functions.

In Chapter 3 we characterize a particular set of binary words having the
property that no pre�x of any word is a su�x of any other word. Working
which such kind of sets is required to further develop the studies of pattern
avoidance.

In Chapter 4 we expand the results of Chapter2 using the ones of
Chapter 3 passing from a single to a set of forbidden patterns.

In Chapter 5 we apply the tool of succession rule in a di�erent context
from the previous ones furnishing a su�cient condition to determine if an
integer sequence, arise from a recurrence relation with integer coe�cients,
are all positive.

In Chapter 6 we summarize the main results of this thesis and list
some open problems in the context both of pattern avoidance and positivity
problem.
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1
Basic de�nitions

In this chapter we give some basic de�nitions and notations related to
succession rules and pattern avoidance which are used in this thesis.

1.1 Succession rules
The concept of a succession rule was introduced in [22] by Chung, Gra-

ham, Hoggat and Kleiman to study reduced Baxter permutations. Later it
was applied to the enumeration of permutations with forbidden subsequences
[28, 29, 81]. Recently this technique has been successfully applied to other
combinatorial objects [10, 12]. In all these cases there is a common approach
to the examined enumeration problem: agenerating treeis associated to cer-
tain combinatorial class, according to some enumerative parameters, in such
a way that the number of nodes appearing on leveln of the tree gives the
number of n-sized objects in the class.

In [81] West discusses how generating trees can be used to some enu-
merate classes of permutations with forbidden subsequences and argues for
a broader use of generating trees in combinatorial enumeration. Only later
this has been recognized as an extremely useful tool for the ECO method
[12].

In the next we give some basic de�nitions and notations related to the
concept of succession rule.

1.1.1 Ordinary succession rules

An (ordinary) succession rule 
 on a set � � N is a system constituted
by an axiom (a), with a 2 �, and a set of productions of the form:

f (k) 1 (e1(k))( e2(k)) : : : (ek (k))gk2 � ei (k) 2 � ; 1 � i � k:

A production constructs, for any given k, its k successors, (e1(k)) ; (e2(k)) ; : : :
: : : ; (ek (k)). In most of the cases, for a succession rule 
, we use the more
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CHAPTER 1. BASIC DEFINITIONS

compact notation:

(1.1) 
 :

(
(a)

(k)
1

 (e1(k))( e2(k)) : : : (ek (k))

In this context � is called the set of labels. The rule 
 can be rep-
resented by means of agenerating tree, that is an in�nite tree with the
root labelled by (a). Each node labelled by (k) has k successors labelled
(e1(k)) ; (e2(k)) ; : : : ; (ek (k)), respectively. By convention the root of the tree
is at level 0, and a node lies at leveln if its parent lies at level n � 1. A
tree is a generating tree for a class of combinatorial objects if there exists a
bijection between the objects of sizen and the nodes at leveln in the tree,
and in such a case a given object can be coded by the sequence of labels met
from the root of the generating tree to the object itself.

For instance, the succession rule forCatalan numbers(that is: 1 ; 2; 5; 14;
132; 429; 1430; 4862; 16796; : : : sequence A000108 in the The On-Line En-
cyclopedia of Integer Sequences [71]) which describe the growth of several
combinatorial objects, �rst of all the well-parenthesized expressions[73, 74],
is:

(1.2)

(
(2)

(k) 1 (2)(3) : : : (k)(k + 1)

and some levels of its generating tree are shown in Figure1.1. By applying
the succession rule (1.2) to the well-parenthesized expressions we have the
generating tree in Figure 1.2. For example, the word ()(())() is encoded by
(2)(2)(3)(2). We refer to [ 2, 10, 12, 15] for further details and examples on
succession rules.

(2)

5

2

1

(5)(4)(3)(2)(4)(3)(2)(3)(2)(4)(3)(2)(3)(2)

(4)(3)(2)(3)(2)

(3)(2)

14

Figure 1.1: Some levels of the generating tree associated to the succession rule
(1.2)

We remark that, from the above de�nition, a node labelled (k) has pre-
cisely k successors, this kind of rules are often calledconsistent succession
rules. However, we can also consider succession rules, introduced in [25], in
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1.1. SUCCESSION RULES

( ) ( ) ( )

( ( ( ( ) ) ) )( ( ( ) ( ) ) )( ( ( ) ) ( ) )( ( ( ) ) ) ( )( ( ) ( ( ) ) )( ( ) ( ) ( ) )( ( ) ( ) ) ( )( ( ) ) ( ( ) )( ( ) ) ( ) ( )( ) ( ( ( ) ) )( ) ( ( ) ( ) )( ) ( ( ) ) ( )( ) ( ) ( ( ) )( ) ( ) ( ) ( )

( )

( ( ) )( ) ( )

( ( ( ) ) )( ( ) ( ) )( ( ) ) ( )( ) ( ( ) )

Figure 1.2: Some levels of the generating tree associated to the growth of the
well-parenthesized expressions

which the value of a label does not necessarily represent the number of its
successors. As an instance see the succession rule (1.3) for Catalan numbers
whose generating tree is shown in Figure1.3.

(1.3)

(
(0)

(k)
1

 (0)(1) : : : (k)(k + 1)

(0)

(3)(2)(1)(0)(2)(1)(0)(1)(0)(2)(1)(0)(1)(0)

(2)(1)(0)(1)(0)

(1)(0)

Figure 1.3: Some levels of the generating tree associated to the succession rule
(1.3)

A succession rule 
 de�nes a sequence of positive integersf f ngn� 0 where
f n is the number of the nodes at leveln in the generating tree de�ned by 
.
As the root is at level 0, sof 0 = 1. The function f 
 (x) =

P
n� 0 f nxn is the

generating function determined by 
.
Two succession rules areequivalent if they have the same generating

function. A succession rule is�nite if it has a �nite number of labels and
productions.

For example, the two succession rules:

�
(2)
(2)  (2)(2)

�
(2)
(k)  (1)k� 1(k + 1)

9



CHAPTER 1. BASIC DEFINITIONS

are equivalent rules, and de�ne the sequencef n = 2 n . The one on the left is
a �nite rule, since it uses only the label (2), while the one on the right is a
rule which generates an in�nite number of labels.

1.1.2 Jumping succession rules

Succession rules such as (1.1) or (1.3) are not su�cient to handle all enu-
meration problems and so we consider a slight generalization calledjumping
succession rule. Roughly speaking, the idea is to consider a set of produc-
tions acting on the objects of a class and producing successors at di�erent
levels.

To indicate a jumping succession rule � is used the following notation:

(1.4) � :

8
><

>:

(a)

(k) 1 (e1(k))( e2(k)) : : : (ek (k))

(k)
j

 (d1(k))( d2(k)) : : : (dk (k))

The generating tree associated to � has the property that each node
labelled by (k) and lying at level n produces two sets of successors, the
�rst set at level n + 1 and having labels (e1(k)) ; (e2(k)) ; : : : ; (ek (k)), respec-
tively, and the second one at leveln + j , with j > 1, and having labels
(d1(k)) ; (d2(k)) ; : : : ; (dk (k)), respectively.

For example, the jumping succession rule (1.5) counts the number of 2-
generalized Motzkin paths(see [76] for further details) and Figure 1.4 shows
some levels of the associated generating tree. For more details about these
topics, see [31].

(1.5)

8
><

>:

(1)

(k) 1 (1)(2) � � � (k � 1)(k + 1)

(k) 2 (k)

(1)

(1)(3)  (1)(3)(1)(3)(5)(3)(2)(1)(3)(1)(2)(1)(3)(1)

(2)(2)(4)(2)(1)(2)

(1)(3)(1)

(2)

Figure 1.4: Some levels of the generating tree associated to the succession rule
(1.5)
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1.1. SUCCESSION RULES

Of course the most general expression for a jumping succession rule can
have more than one jump as in (1.6).

(1.6)

8
>>>>>>><

>>>>>>>:

(a)

(k)
j 1 (e11(k))( e12(k)) : : : (e1k (k))

(k)
j 2 (e21(k))( e22(k)) : : : (e2k (k))

...

(k)
j m (em1(k))( em2(k)) : : : (emk (k))

Moreover, by leaving the notion of consistency for a succession rule we
can have jumping succession rules of the form in (1.7).

(1.7)

8
>>>>>>><

>>>>>>>:

(a)

(k)
j 1 (e11(k))( e12(k)) : : : (e1k1 (k))

(k)
j 2 (e21(k))( e22(k)) : : : (e2k2 (k))

...

(k)
j m (em1(k))( em2(k)) : : : (emk m (k))

1.1.3 Marked succession rules

Another generalization is introduced in [55], where the authors deal with
marked succession rules. In this case the labels appearing in a succession
rule can be marked, and themarked labels are considered together with the
unmarked labels.

A marked generating treeis a rooted labelled tree where there appear
marked and unmarked labels according to the corresponding succession rule.
The main property is that in the generating tree a marked label (k) kills or
annihilates the unmarked label (k) lying on the same leveln. In particular,
the enumeration of the combinatorial objects in a class is the di�erence
between the number of unmarked and marked labels lying on a given level.

Note that, a compact notation (1.8) for a marked succession rule:

(1.8)

8
><

>:

(a)

(k)
1

 (e1(k))( e2(k)) : : : (ek (k))

(k)
j

 (d1(k))( d2(k)) : : : (dk (k))

describes also the behavior for (k), that is ( 1.9), and for any label (k), we
have (k) = ( k).

(1.9)

(
(k) 1 (e1(k))( e2(k)) : : : (ek (k))

(k)
j

 (d1(k))( d2(k)) : : : (dk (k))

11



CHAPTER 1. BASIC DEFINITIONS

Of course a marked succession rule can also be not consistent. By the
way, each succession rule (1.1) can be trivially rewritten as ( 1.10).

(1.10)

8
><

>:

(a)

(k) 1 (e1(k))( e2(k)) : : : (ek (k))( k)

(k) 1 (k)

For example, the succession rule for Catalan numbers can be rewritten in
the form (1.11) and Figure 1.5shows some levels of the associated generating
tree.

(1.11)

8
><

>:

(2)

(k) 1 (2)(3) : : : (k)(k + 1)( k)

(k) 1 (k)

(2)

(2)

(2)(2)(3)(2)

(2)(2)(3)(2)(2)(2)(3)(2)(3)(3)(4)(3)(2)(2)(2)(3)

Figure 1.5: Three levels of the generating tree associated to the succession rule
(1.11)

The various concepts previously described can be mixed together giving
rise to jumping and marked succession rules.

1.2 Pattern avoidance
Let B be a �nite, non-empty set called alphabet. The elements of B

are called letters. A (�nite) sequence of letters in B is called (�nite) word.
Let B � denote the monoid of all �nite words over B where " denotes the
empty word and B + = B � n" . Let ! be a word in B � , then j! j indicates the
length of ! and j! ja denotes the number of occurrences ofa in ! , being
a 2 B . A word ! = ! 0! 1 : : : ! n� 1 of length j! j = n contains a pattern
p = p0p1 : : : ph� 1 2 B � of length jpj = h, with h � n, if there is an index i
such that ! i ! i +1 : : : ! i + h� 1 = p0p1 : : : ph� 1. Otherwise, we say that ! avoids
the pattern p, or that p is a forbidden pattern for ! .

12



1.2. PATTERN AVOIDANCE

1.2.1 Pattern avoidance in binary words

Let B = f 0; 1g� be the set of binary words, the subclassB [p] of B denotes
the set of binary words excluding a given patternp 2 f 0; 1g� , i.e. each binary
word ! 2 B [p] avoids p.

In particular, if B [p]
n;k denotes the number of words excluding the pattern

p and having n bits 1 and k bits 0, then by using the results in [3] we have:

(1.12) B [p](x; y) =
X

n;k � 0

B [p]
n;k xnyk =

C [p](x; y)
(1 � x � y)C [p](x; y) + x jpj1 yjpj0

;

where jpj1 and jpj0 correspond to the number of ones and zeroes in the
pattern and C [p](x; y) is the autocorrelation polynomial with coe�cients
given by the autocorrelation vector (see also [40, 41, 69]). For a given p, this
vector of bits c = ( c0; : : : ; ch� 1) can be de�ned in terms of Iverson's bracket
notation (for a predicate P, the expression [[P]] has value 1 ifP is true and 0
otherwise) as follows:ci = [[ p0p1 � � � ph� 1� i = pi pi +1 � � � ph� 1]]. In other words,
the bit ci is determined by shifting p right by i positions and setting ci = 1
if and only if the remaining letters match the original. For example, when
p = 101010 the autocorrelation vector is c = (1 ; 0; 1; 0; 1; 0); as illustrated
in Table 1.1, and C [p](x; y) = 1 + xy + x2y2; that is, we mark with x j yi the
tails of the pattern with j bits 1; i bits 0 and cj + i = 1 : Therefore, in this
case we have:

B [p](x; y) =
1 + xy + x2y2

(1 � x � y)(1 + xy + x2y2) + x3y3 :

1 0 1 0 1 0 Tails
1 0 1 0 1 0 1

1 0 1 0 1 0 0
1 0 1 0 1 0 1

1 0 1 0 1 0 0
1 0 1 0 1 0 1

1 0 1 0 1 0 0

Table 1.1: The autocorrelation vector for p = 101010

As another example, whenp = 11100 then C [p](x; y) = 1 and

B [p](x; y) = 1 =(1 � x � y + x3y2):

In this thesis, we are interested in studying the classF [p] � f 0; 1g� of
binary words such that j! j0 � j ! j1, for all ! 2 F [p].

13



CHAPTER 1. BASIC DEFINITIONS

Note that, each binary word ! can be naturally represented as a lattice
path on the Cartesian plane by associating arise step, de�ned by (1; 1) and
denoted byx, to each 1's in! , and a fall step, de�ned by (1; � 1) and denoted
by x, to each 0's in ! . From now on, we refer interchangeably to words or
their graphical representations on the Cartesian plane, that is paths.

For example, the geometrical representation ofp = 11100 is illustrate in
Figure 1.6.

Figure 1.6: geometrical representation ofp = 11100

14



2
Single pattern avoidance

In this chapter we study the enumeration and the construction of the
classF of binary words in f 0; 1g� having the number of 1's greater than or
equal to the number of 0's, and avoiding asingle �xed pattern p. Firstly,
we consider the forbidden pattern p as the pattern p(j ) = 1 j +1 0j , for any
�xed j � 1. Secondly, we focus on the generalization of the �xed forbidden
pattern p, passing fromp(j ) = 1 j +1 0j , j � 1 to p(j; i ) = 1 j 0i , 0 < i � j .

2.1 A note on the classF [p]

In this section we introduce some technics for the enumeration and the
construction of the classF [p], according to the numbers of ones, withp =
p(j ) = 1 j +1 0j , for any �xed j � 1.

The �rst used tool is a context-free grammar for the classF [p(j )] . We
exemplify this approach to the classF [p(1)] where p(1) = 110, from which
the generating function can be obtained.

We note that for each parameter j an \ad hoc" context-free grammar
depending on the shape of the forbidden pattern must be de�ned.

A way for a more uni�ed approach, which does not depend on the shape
of the forbidden pattern p(j ), is initially obtained by means of the theory of
Riordan arrays solving the enumeration problem and giving ajumping and
marked succession rulewhich describes the growth of such words according
to their number of ones.

2.1.1 A context-free grammar for F [p]

A context-free grammar can be used to construct the classF [p(j )] . In this
case the shape of the forbidden patternp(j ) must be taken into considera-
tion, therefore we furnish the grammar for F [p(1)] , with p(j ) = p(1) = 110,

15



CHAPTER 2. SINGLE PATTERN AVOIDANCE

that is G = ff 0; 1g; f F; A; B; C; D; E g; P; F g where P is the set:

P :

8
>>>>>><

>>>>>>:

F ! BCA jBCDA
A ! 1Aj"
B ! 10B j"
C ! 01Cj"
D ! 00E11
E ! B 0E1jB

For example, the word ! = 0010112 F [p(1)] is generated by the following
derivation:

F ! BCDA ! CDA ! DA ! 00E11A !

! 00B 11A ! 0010B 11A ! 001011A ! 001011:

This kind of grammar does not allow to the forbidden pattern 110 to be
created and, at the same time, it does not allow to the number of 1's to be
less than the number of 0's. In order to do that di�erent subcases must be
dealt which are managed by the variables appearing in the grammar.

By applying the Sch•utzenberger's methodology [68] it is possible to trans-
late the productions of the grammar into a system of functional equations
whose solution is the generating function of the languageF [p(1)] according
to the number of ones:

F (x) = B (x)C(x)A(x) + B (x)C(x)D(x)A(x) = B (x)C(x)A(x)(1 + D(x))

A(x) = 1 + xA (x) then A(x) = 1
1� x .

B (x) = 1 + xB (x) then B (x) = 1
1� x .

C(x) = 1 + xC(x) then C(x) = 1
1� x .

D (x) = x2E(x):

E (x) = xB (x)E(x) + B (x) then E(x) = B (x)
1� xB (x) .

Therefore, the generating functionF (x) according to the number of 1 is:

(2.1) F (x) =
1

(1 � x)3 (1 +
x2

1 � 2x
) =

1
(1 � x)(1 � 2x)

meaning that the number of words containing exactly n occurrences of 1's
is 2n+1 � 1.
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2.1. A NOTE ON THE CLASSF [P ]

We note that, the simplest classF [p(1)] with p(j ) = p(1) = 110 is de-
�ned by a nontrivial context-free grammar. A general approach by means
of context-free grammars is rather cumbersome as a di�erent number of
productions must be added strictly depending on the parameterj .

2.1.2 Riordan array and the class F [p]

In this section, we establish necessary and su�cient conditions for the
number of words counted according to the number of zeroes and ones to be
related to proper Riordan arrays.

This problem is interesting in the context of the Riordan arrays theory
because the matrices arising there are naturally de�ned by recurrence rela-
tions following the characterization given in [56] (see formula (2.3) below).

In order to study the binary words avoiding a pattern in terms of Riordan
arrays, we consider the arrayF [p] = ( F [p]

n;k ) given by the lower triangular

part of the array B[p] = ( B [p]
n;k ) by means of (1.12) in Section 1.2, that is,

F [p]
n;k = B [p]

n;n � k with k � n: More precisely,F [p]
n;k counts the number of words

avoiding p and having length 2n � k; n bits one and n � k bits zero. Given
a pattern p = p0 : : : ph� 1 2 f 0; 1gh , let �p = �p0 : : : �ph� 1 be the pattern with
�pi = 1 � pi ; 8i = 0 ; � � � ; h � 1.

We obviously haveF [�p]
n;k = B [�p]

n;n � k = B [p]
n� k;n ; therefore, the matricesF [p]

and F [ �p] represent the lower and upper triangular part of the array B[p];
respectively.

Moreover, we haveF [p]
n;0 = F [�p]

n;0 = B [p]
n;n ; 8n 2 N; that is, columns zero of

F [p] and F [ �p] correspond to the main diagonal ofB[p]:
Tables 2.1, 2.2 and 2.3 illustrate some rows for the matrices B[p]; F [p]

and F [ �p] when p = 11100:

n=k 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8
2 1 3 6 10 15 21 28 36
3 1 4 9 18 32 52 79 114
4 1 5 13 29 58 106 180 288
5 1 6 18 44 96 192 357 624
6 1 7 24 64 151 325 650 1222
7 1 8 31 90 228 524 1116 2232

Table 2.1: The matrix B[p] for p = 11100

We briey recall that a Riordan array is an in�nite lower triangular
array (dn;k )n;k 2 N; de�ned by a pair of formal power series (d(t); h(t)) ; such

17



CHAPTER 2. SINGLE PATTERN AVOIDANCE

n=k 0 1 2 3 4 5 6 7
0 1
1 2 1
2 6 3 1
3 18 9 4 1
4 58 29 13 5 1
5 192 96 44 18 6 1
6 650 325 151 64 24 7 1
7 2232 1116 524 228 90 31 8 1

Table 2.2: The triangle F [p] for p = 11100

n=k 0 1 2 3 4 5 6 7
0 1
1 2 1
2 6 3 1
3 18 10 4 1
4 58 32 15 5 1
5 192 106 52 21 6 1
6 650 357 180 79 28 7 1
7 2232 1222 624 288 114 36 8 1

Table 2.3: The triangle F [ �p] for �p = 00011

that d(0) 6= 0 ; h(0) = 0 ; h0(0) 6= 0 and the generic elementdn;k is the n-th
coe�cient in the series d(t)h(t)k ; i.e.:

dn;k = [ tn ]d(t)h(t)k ; n; k � 0:

From this de�nition we have dn;k = 0 for k > n: An alternative de�nition
is in terms of the so-calledA-sequence andZ -sequence, with generating
functions A(t) and Z (t) satisfying the relations:

h(t) = tA (h(t)) ; d(t) =
d0

1 � tZ (h(t))
with d0 = d(0):

In other words, Riordan arrays correspond to matrices where each ele-
ment dn;k is described by a linear combination of the elements in the previous
row, starting from the previous column, with coe�cients in A:

(2.2) dn+1 ;k+1 = a0dn;k + a1dn;k +1 + a2dn;k +2 + � � �

Another characterization (see [56]) states that a lower triangular array
(dn;k )n;k 2 N is Riordan if and only if there exists another array (� i;j ) i;j 2 N,

18



2.1. A NOTE ON THE CLASSF [P ]

with � 0;0 6= 0, and a sequence (� j ) j 2 N such that:

(2.3) dn+1 ;k+1 =
X

i � 0

X

j � 0

� i;j dn� i;k + j +
X

j � 0

� j dn+1 ;k+ j +2 :

Matrix ( � i;j ) i;j 2 N is called the A-matrix of the Riordan array.
If P [0](t); P [1](t); P [2](t); : : : denote the generating functions of rows 0; 1; 2; : : :
in the A-matrix, i.e.:

P [i ](t) = � i; 0 + � i; 1t + � i; 2t2 + � i; 3t3 + : : :

and Q(t) is the generating function for the sequence (� j ) j 2 N, then we have:

(2.4)
h(t)

t
=

X

i � 0

t i P [i ](h(t)) +
h(t)2

t
Q(h(t)) ;

(2.5) A(t) =
X

i � 0

t i A(t) � i P [i ](t) + tA (t)Q(t):

The theory of Riordan arrays and the proofs of their properties can
be found in [56]. The Riordan arrays which arise in the context of pattern
avoidance (see [3, 54]) have the nice property to be de�ned by a quite simple
recurrence relation following the characterization (2.3), while the relation in-
duced by theA-sequence is, in general, more complex. From a combinatorial
point of view, this means that it is very challenging to �nd a construction
allowing to build objects of size n + 1 from objects of size n. Instead, the
existence of a simpleA-matrix corresponds to a possible construction from
objects of di�erent sizes less thann +1. On the other hand, as we will see in
the sequel, the recurrence following characterization (2.3) contains negative
coe�cients and therefore gives rise to interesting non trivial combinatorial
problems.

In this section we examine in particular the family of patterns p = p(j ) =
1j +1 0j and show that the corresponding recurrence relation can be combi-
natorially interpreted. To this purpose, we translate the recurrence into a
succession rule, as it is typically done from problems related to Riordan ar-
rays (see, e.g., [57]), and give a construction for the class of binary words
avoiding the pattern p:

The Riordan array for the pattern p(j ) = 1 j +1 0j

Let us consider the family of patterns p = p(j ) = 1 j +1 0j and let B [p(j )]
n;k

denote the number of words excluding the pattern and havingn bits 1 and
k bits 0; from (1.12) we have

(2.6) B [p(j )] (x; y) =
X

n;k � 0

B [p(j )]
n;k xnyk =

1
1 � x � y + x j +1 yj :
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CHAPTER 2. SINGLE PATTERN AVOIDANCE

Now, let F [p(j )]
n;k count the number of words avoiding p(j ) and having n

bits one andn � k bits zero. Obviously we haveF [p(j )]
n;k = B [p(j )]

n;n � k with k � n:
By extracting the coe�cients from ( 2.6) we have:

[xn+1 yk+1 ](1 � x � y + x j +1 yj )B [p(j )] (x; y) =

= B [p(j )]
n+1 ;k+1 � B [p(j )]

n;k +1 � B [p(j )]
n+1 ;k + B [p(j )]

n� j;k +1 � j = 0

and therefore:

(2.7) F [p(j )]
n+1 ;k+1 = F [p(j )]

n;k + F [p(j )]
n+1 ;k+2 � F [p(j )]

n� j;k :

This is a recurrence relation of type (2.3) and therefore F [p(j )] = ( F [p(j )]
n;k )

is a Riordan array. In particular, the coe�cients of the relation correspond
to P [j ](t) = � 1; P [0](t) = 1 ; and Q(t) = 1 ; therefore we have

h[p(j )] (t)
t

=
X

i � 0

t i P [i ](h[p(j )] (t)) +
h[p(j )] (t)2

t
Q(h(t)) = 1 � t j +

h[p(j )] (t)2

t

that is,

h[p(j )] (t)2 � h[p(j )] (t) + t � t j +1 = 0 ; h[p(j )] (t) =
1 �

p
1 � 4t + 4 t j +1

2
:

We explicitly observe that from formula ( 2.5) the generating function
A(t) of the A-sequence is the solution of aj + 1 degree equation (1�
t)A(t) j +1 � A(t) j + t j = 0 : For example, when p(j ) = p(2) = 11100 by
developing into series we �nd:

A(t) = 1 + t + 2 t3 � t4 + 7 t5 � 12t6 + 38t7 � 99t8 + 281t9 + O(t10)

and this result excludes that there might exist a simple dependence of the
elements in rown+1 from the elements in row n. For what concernsd[p(j )] (t);
we simply use the Cauchy formula for �nding the main diagonal of matrix
B[p(j )] (see, e.g., [73, Cap. 6, p. 182]):

d[p(j )] (t) = [ x0]B [p(j )] (x;
t
x

) =
1

2�i

I
B [p(j )] (x;

t
x

)
dx
x

:

We have:
1
x

B [p(j )] (x;
t
x

) =
� 1

x2(1 � t j ) � x + t

and in order to compute the integral, it is necessary to �nd the singularities
x(t) such that x(t) ! 0 with t ! 0 and apply the Residue theorem. In this
case the right singularity is:

x(t) =
1 �

p
1 � 4t(1 � t j )

2(1 � t j )
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and �nally we have:

d[p(j )] (t) = lim
x! x(t )

� 1
x2(1 � t j ) � x + t

(x � x(t)) =
1

p
1 � 4t + 4 t j +1

:

Observe also that:
d[p(j )] (t) � 1

d[p(j )] (t)h[p(j )] (t)
= 2

and therefore F [p(j )]
n+1 ;0 = 2F [p(j )]

n+1 ;1: Recurrence (2.7) is quite simple, however,
the presence of negative coe�cients leads to a possible non trivial combina-
torial interpretation. In order to study this problem we proceed as follows.
The dependence ofF [p(j )]

n+1 ;k+1 from the same rown + 1 can be simply elimi-
nated and we have:

F [p(j )]
n+1 ;k+1 = F [p(j )]

n;k � F [p(j )]
n� j;k + F [p(j )]

n+1 ;k+2 =

= F [p(j )]
n;k � F [p(j )]

n� j;k + F [p(j )]
n;k +1 � F [p(j )]

n� j;k +1 + F [p(j )]
n+1 ;k+3 = � � � =

(2.8)
= ( F [p(j )]

n;k + F [p(j )]
n;k +1 + F [p(j )]

n;k +2 + � � � )�

� (F [p(j )]
n� j;k + F [p(j )]

n� j;k +1 + F [p(j )]
n� j;k +2 + � � � )

Similarly we have:

(2.9)
F [p(j )]

n+1 ;0 = 2( F [p(j )]
n;0 + F [p(j )]

n;1 + F [p(j )]
n;2 + � � � )�

� 2(F [p(j )]
n� j; 0 + F [p(j )]

n� j; 1 + F [p(j )]
n� j; 2 + � � � )

Finally, by using the results in [3], recurrences (2.8) and (2.9) translate
into the following succession rule, for eachk � 0:

(2.10)

8
><

>:

(0)

(k)
1

 (k + 1)( k) � � � (1)(02)(01)

(k)
j +1
 (k + 1)( k) � � � (1)(02)(01)

This rule can be represented as a tree having its root labelled (0) and
where each node with label (k) at a given level n hask +3 sons at leveln +1
labelled (k + 1) ; (k); � � � ; (1); (02); (01) and k + 3 sons at level n + j + 1 with
labels (k + 1)( k) � � � (1)(02)(01). If we denote by dn;k the number of nodes
having label k at level n in the tree and count as negative the marked nodes
then we obtain matrix F [p(j )] = ( F [p(j )]

n;k )n;k 2 N; that is, F [p(j )] corresponds
to the matrix associated to the rule (2.10). The relations between Riordan
arrays and succession rules has been widely studied and we refer the reader
to [55, 57] for more details.
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CHAPTER 2. SINGLE PATTERN AVOIDANCE

2.2 A generating algorithm forF [p(j )]

In this section we present a combinatorial interpretation of the jumping
and marked succession rule (2.10) for the classF [p(j )] , for any �xed j � 1. In
particular, the problem of associating a word to a path in the generating tree
obtained by the succession rule (2.10) is solved by introducing an algorithm
which constructs all binary words in F and then kills those containing the
forbidden pattern p(j ) = 1 j +1 0j , for any �xed j � 1. Then, a generating
function is given by using the ECO-method for the enumeration of combi-
natorial objects which admit recursive descriptions in terms of generating
trees.

2.2.1 A construction for F [p(j )]

In this section we de�ne an algorithm which associates a lattice path
in F [p(j )] , where p(j ) = x j +1 x j = 1 j +1 0j , to a sequence of labels obtained
by means of the succession rule (2.10), where the subscripts of labels (0)
are simply used in order to distinguish the two labels one from each other,
since they are obtained in two di�erent ways in the generating process.
Note that the labels (01) and (02) have the same set of successors regardless
their subscripts. This give a construction for the setF [p(j )] according to the
number of rise steps or equivalently the number of ones.

The axiom (0) is associated to the empty path" .
A path ! 2 F , with n rise steps and such that its endpoint has ordinatek,
providesk+3 paths with n+1 rise steps, according to the �rst production of
(2.10) having k +1 ; k; : : : ; 1; 0; 0 as endpoint ordinate, respectively. The �rst
k + 2 labels are obtained by adding to ! a sequence of steps consisting of
one rise step followed byk + 1 � h, 0 � h � k + 1, fall steps (see Figure2.1).
Each path so obtained has the property that its rightmost su�x beginning
from the x-axis, either remains strictly above the x-axis itself or ends on
the x-axis by a fall step. Note that in this way the paths ending on the
x-axis and having a rise step as last step are never obtained. These paths
are bound to the label (01) of the �rst production in ( 2.10) and the way to
obtain them will be described later in this section.

 )2

k+1kk

)(k)(k )( +1k (1)

11

(0

Figure 2.1: The mapping associated to (k)
1

 (k + 1)( k) : : : (1)(02) of (2.10)

We de�ne a marked forbidden pattern p(j ) as a pattern p(j ) = x j +1 x j
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2.2. A GENERATING ALGORITHM FORF [P (J )]

whose steps cannot be split, that is, they must always be contained all
together in that de�ned sequence. We say that a point is strictly contained
in a given marked forbidden pattern p(j ) if it is in p(j ) and it is di�erent
from both its initial point and its last point. We denote a marked forbidden
pattern by marking its peak.

A cut operation, i.e the procedure which splits a given path into two
subpaths, is not possible within a marked forbidden pattern p(j ). After a
cut operation, it is not allowed to switch any rise step with a fall one, and
viceversa, inside a marked forbidden pattern, but it can be translated.

A path ! 2 F , with n rise steps and such that its endpoint has ordi-
nate k, provides k + 3 paths, with n + j + 1 rise steps, according to the
second production of (2.10) having k + 1 ; k; : : : ; 1; 0; 0 as endpoint ordinate,
respectively. The �rst k +2 labels are obtained by adding to ! a sequence of
steps consisting of the marked forbidden patternp(j ) = x j +1 x j followed by
k + 1 � h, 0 � h � k + 1, fall steps (see Figure2.2). Each path so obtained
has the property that its rightmost su�x beginning from the x-axis, either
remains strictly above the x-axis itself or ends on thex-axis by a fall step.
At this point the label (0 1) due to the �rst and the second production of
(2.10) yield paths which either do not contain marked forbidden patterns
in its rightmost su�x and end on the x-axis by a rise step or having the
rightmost marked point with ordinate less than or equal to j .

)

(j)(j)(j)(j)

1j+

(1)

k k k

k k k( ) ( +1) ( )

+1
1

2(0  

Figure 2.2: The mapping associated to (k)
j +1
 (k + 1)( k) : : : (1)(02) of (2.10)

In order to obtain the label (01) according to the �rst production of
(2.10), we consider the path! 0obtained from ! by adding a sequence of steps
consisting of one rise step followed byk fall steps, while in order to obtain
the label (01) according to the second production of (2.10), we consider
the path ! 0 obtained from ! by adding a sequence of steps consisting of the
marked forbidden pattern p(j ) = x j +1 x j followed by k fall steps. By applying
the previous actions, a path! 0 can be written as ! 0 = v' 0, where ' 0 is the
rightmost su�x in ! 0beginning from the x-axis and strictly remaining above
the x-axis.

We distinguish two cases: in the �rst one ' 0does not contain any marked
point and in the second one' 0 contains at least one marked point.

If the su�x ' 0 does not contain any marked point, then the desired label
(01) is associated to the pathv(' 0)cx, where (' 0)c is the path obtained from
' 0 by switching rise and fall steps (see Figure2.3).
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1

)(
c

ϕ

(0)

x

ϕ

Figure 2.3: A graphical representation of the actions giving the label (01) in case
of no marked points in ' 0

If the su�x ' 0 contains marked points, let z = ( xz; yz) be the leftmost
point in ' 0 having highest ordinate, and not strictly contained in a marked
forbidden pattern. The desired label (01) is associated to the path obtained
by applying cut and paste actionswhich consist on the concatenation of a
fall step x with the path in ' 0 running from z to the endpoint of the path,
called � , and the path running from the initial point in ' 0 to z, called � (see
Figure 2.4 and 2.5).

ϕ

c)

b)

a)

x

x

x

z

z

z

ϕ

ϕ

Figure 2.4:Some examples of the actions giving the label (01) in the case of marked
points in ' 0, p(j ) = p(1) = x2x

This last mapping can be inverted as follows. Letd be the rightmost
fall step in a path ! � labelled (01) beginning from the x-axis and such that
each marked point, on its right, has ordinate less than or equal toj . Let us
! � = v' � , where ' � is the rightmost su�x in ! � beginning with d and let
P be the rightmost point in ' � having lowest ordinate. The inverted lattice
path of ! � is given by v�� , where � is the path in ' � running from P to
the endpoint of the path and � is the path ' � running from the endpoint of
d to P (see Figure2.6). Figure 2.7 shows the cut and paste actions related
to the inverted mapping with the pattern p(j ) = p(1) = x2x.
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1

x

(0)

α β

β α

Figure 2.5: A graphical representation of the cut and paste actions giving the label
(01) in case of marked points in' 0

1

d

α β

β α

Figure 2.6: A graphical representation of the path obtained by means of the in-
verted mapping related to the label (01) in case of marked points in' 0

ϕ

P

ϕ

x

d

x

Figure 2.7: The inverted mapping related to the label (01) in case of marked points
in ' 0

At this point, we can describe the complete mapping de�ned by the
succession rule (2.10). In particular Figure 2.8 shows this complete mapping
with the pattern p(j ) = p(1) = x2x and Figure 2.9 sketches some levels
of the generating tree for the paths in F [p(j )] enumerated according to the
number of the rise steps.
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1

)(0

)(0
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(3)

(3)

(2)

(1)

(2)

(1)

(2)

2

1

2

Figure 2.8: The set of lattice paths obtained from a given (k), by means of the
succession rule (2.10)

2.2.2 Proving the construction

This construction generates 2C copies of each path havingC forbidden
patterns such that 2C� 1 instances are coded by a sequence of labels ending
by a marked label, say (k), and contain an odd number of marked forbidden
patterns, and 2C� 1 instances are coded by a sequence of labels ending by a
non-marked label, say (k), and contain an even number of marked forbidden
patterns. For example, Figure2.10shows the 4 copies of a given path having
2 forbidden patterns p(j ) = p(1) = x2x, where the sequences of labels show
the derivation of each path in the generating tree.

This observation is due to the fact that when a path is obtained accord-
ing to the �rst production of ( 2.10) then no marked forbidden pattern is
added. Moreover, when a path is obtained according to the second produc-
tion of ( 2.10) exactly one marked forbidden pattern is added. In any case,
the actions performed to obtain the label (01) do not change the number of
marked forbidden patterns in the path.

Theorem 1 The generating tree of the paths inF [p(j )] , wherep(j ) = x j +1 x j ,
j � 1, according to the number of rise steps, is isomorphic to the tree having
its root labelled (0) and recursively de�ned by the succession rule(2:10).
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Figure 2.9: Some levels of the generating tree associated to the succession rule
(2.10) for the path in F [p( j )] , being p(j ) = p(1) = x2x
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(1) (0 ) (0 ) (0 ) 2(1) (0 ) (0 ) 1111211 (1) (0 )(1) (0 ) (0 )

Figure 2.10: The 4 copies of a given path having 2 forbidden patterns,p(j ) =
p(1) = x2x

Proof. We have to show that the algorithm described in the previous
pages is a construction for the setF [p(j )] according to the number of rise
steps. This means that all the paths in F with n rise steps are obtained.
Moreover, for each obtained path ! in F nF [p(j )] with n rise steps,C for-
bidden patterns and (k) as last label of the associated code, a path! in
F nF [p(j )] with n rise steps,C forbidden patterns and (k) as last label of the
associated code is also generated having the same form as! but such that
the last forbidden pattern is marked if it is not in ! and vice-versa.

The �rst assertion is an immediate consequence of the construction ac-
cording to the �rst production of ( 2.10).

In order to prove the second assertion we have to distinguish two cases
(which in their turn are subdivided in 5 and 3 subitems respectively) de-
pending on whether the last forbidden pattern is marked or not. For sake
of completeness we report the entire proof, which is indeed rather cumber-
some. Anyhow, the interested reader could skip all the subitems, except the
�rst ones. In fact, all the others are obtained from these by means of slight
modi�cations.

We denote byh be the ordinate of the peak of the last forbidden pattern.

First case: the last forbidden pattern in ! is marked. We consider the
following subcases:h > j , h = j , 0 < h < j , h = 0 and h < 0.

h > j : Each path ! in F nF [p(j )] can be written as ! = �x j +1 x f � , where
� 2 F , � 2 F [p(j )] and j � f � d + j + 1 where d � 0 is the ordinate
of the endpoint of � (see Figure2.11).

The path ! which kills ! is obtained by performing on the path � the
following: add the path x j by applying j times the mapping associated
to (k)

1
 (k + 1) of the �rst production of ( 2.10), add the path xx f by

applying the mapping associated to (k) 1 (d + j + 1 � f ) of the �rst
production of (2.10). The path � in ! is obtained as in ! .

h = j : Each path ! in F nF [p(j )] can be written as ! = � xx j +1 x j � , where
�;  2 F and � 2 F [p(j )] (see Figure2.12). We observe that the path
 can contain marked points, with ordinate b < j , or not. If the path
 contains no marked point, then it remains strictly under the x-axis,
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µ
ν

Figure 2.11: A graphical representation of the path ! in the caseh > j

otherwise the marked forbidden patterns intersect the x-axis when
0 � b < j . In the following cases we consider a path having the same
property.

µ γ
ν

Figure 2.12: A graphical representation of the path ! in the caseh = j

The path ! which kills ! is obtained by performing on � xx the
following: add the path x j � 1 by applying j � 1 times the mapping
associated to (k) 1 (k + 1) of the �rst production of ( 2.10), add the

path xx j by applying the mapping associated to (k) 1 (02) of the �rst
production of (2.10). The path � in ! is obtained as in ! .

0 < h < j : Each path ! in F nF [p(j )] can be written as ! = � xx j +1 x j �x� , where
�;  2 F and �; � 2 F [p(j )] (see Figure2.13). We observe that the path
� remains strictly under the x-axis. In the following cases we consider
a path � having the same property.

The path ! which kills ! is obtained by performing on � xx j +1 � h the
following: add the path xh� 1 by applying h � 1 times the mapping
associated to (k) 1 (k + 1) of the �rst production of ( 2.10), add the

path xxh by applying the mapping associated to (k)
1

 (02) of the �rst
production of (2.10), add the path x j � h �x by applying consecutive
and appropriate mappings of the �rst production of ( 2.10) and these

29



CHAPTER 2. SINGLE PATTERN AVOIDANCE

ηµ
ν

γ

Figure 2.13: A graphical representation of the path ! in the case 0< h < j

mappings must be completed by performing the actions giving the
label (01) in case of no marked points. The path� in ! is obtained as
in ! .

h = 0: Each path ! in F nF [p(j )] can be written as ! = � xx j +1 x j �x� , where
�;  2 F and �; � 2 F [p(j )] (see Figure2.14).

η
µ

ν

γ

Figure 2.14: A graphical representation of the path ! in the caseh = 0

The path ! which kills ! is obtained by performing on � xx j +1 the
following: add the path x j �x by applying consecutive and appropriate
mappings of the �rst production of ( 2.10), apply the actions giving the
label (01) in case of no marked points. The path� in ! is obtained as
in ! .

h < 0: Each path ! in F nF [p(j )] can be written as ! = � xx j +1 x j �x� , where
�;  2 F and �; � 2 F [p(j )] (see Figure2.15).

We distinguish two subcases: in the �rst one the path  contains no
marked points and remains strictly under the x-axis and in the second
one the path  contains at least a marked point.

In the �rst subcase, the path ! which kills ! is obtained by performing
on � the following: add the path xx j +1 x j �x by applying consecutive
and appropriate mappings of the �rst production of ( 2.10), apply the
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η

µ
ν

γ

Figure 2.15: A graphical representation of the path ! in the caseh < 0

actions giving the label (01) in case of no marked points. The path�
in ! is obtained as in ! .

In the second subcase, we consider the rightmost pointP of the path
xx j +1 x j �x with lowest ordinate. The path ! which kills ! is obtained
by performing on � the following: add the path in x j +1 x j �x running
from P to the endpoint of the path by applying consecutive and appro-
priate mappings of the �rst and second production of (2.10), add the
path in x j +1 x j �x running from its initial point to P by applying con-
secutive and appropriate mappings of the �rst and second production
of (2.10), apply the cut and paste actions giving the label (01) in case
of marked points. Obviously, the last forbidden pattern in the path
must be generated by applying consecutive and appropriate mappings
of the �rst production of ( 2.10). The path � in ! is obtained as in ! .

Second case: the last forbidden pattern in! is not a marked forbidden
pattern. We consider the following subcases:h > j , h = j and h < j .

h > j : Each path ! in F nF [p(j )] can be written as ! = �x j +1 x f � , where
� 2 F , � 2 F [p(j )] and j � f � d + j + 1 where d � 0 is the ordinate
of the endpoint of � (Figure 2.16).

ν
µ

Figure 2.16: A graphical representation of the path ! in the caseh > j
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The path ! which kills ! is obtained by performing on the path � the
following: add the path x j +1 x f by applying the mapping associated to

(k)
j +1
 (d + j + 1 � f ) of the second production of (2.10). The path �

in ! is obtained as in ! .

h = j : Each path ! in F nF [p(j )] can be written as ! = � xx j +1 x j � , where
�;  2 F and � 2 F [p(j )] (see Figure2.17). We observe that the path
 can contains marked points, with ordinate b < j , or not. If the
path  contains no marked point, then it remains strictly under the
x-axis, otherwise the marked forbidden patterns intersect thex-axis
when 0� b < j . In the following case we consider a path having the
same property.

γµ
ν

Figure 2.17: A graphical representation of the path ! in the caseh = j

Let P be the rightmost point of the path xx j +1 x j with lowest ordi-
nate. The path ! which kills ! is obtained by performing on � the
following: add the path in x j +1 x j running from P to the endpoint of
the path by applying consecutive and appropriate mappings of the �rst
and second production of (2.10), add the path in x j +1 x j running from
its initial point to P by applying consecutive and appropriate map-
pings of the �rst and second production of (2.10), apply the cut and
paste actions giving the label (01) in case of marked points. Obviously,
the last forbidden pattern in the path must be generated by applying
the mapping of the second production of (2.10). The path � in ! is
obtained as in ! .

h < j : Each path ! in F nF [p(j )] can be written as ! = � xx j +1 x j �x� , where
�;  2 F and �; � 2 F [p(j )] (see Figure2.18). We observe that the path
� remains strictly under the x-axis.

Let P be the rightmost point of the path xx j +1 x j �x with lowest
ordinate. The path ! which kills ! is obtained by performing on �
the following: add the path in x j +1 x j �x running from P to the end-
point of the path by applying consecutive and appropriate mappings
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η

µ
ν

γ

Figure 2.18: A graphical representation of the path ! in the caseh < j

of the �rst and second production of (2.10), add the path in x j +1 x j �x
running from its initial point to P by applying consecutive and appro-
priate mappings of the �rst and second production of (2.10), apply the
cut and paste actions giving the label (01) in case of marked points.
Obviously, the last forbidden pattern in the path must be generated
by applying the mapping of the second production of (2.10). The path
� in ! is obtained as in ! .

We observe that for each path! in F nF [p(j )] with n rise steps,C for-
bidden patterns and last label (k), there exists one and only one path! in
F nF [p(j )] with n rise steps,C forbidden patterns and last label (k) having
the same form as! but such that the last forbidden pattern is marked if it
is not in ! and vice-versa.

This assertion is an immediate consequence of the constructions in the
proof, since the described actions are univocally determined. Therefore, it
is not possible to obtain a path ! which kills a given path ! applying two
distinct procedures. �

2.2.3 Enumeration of F [p(j )]

In order to obtain the enumeration of the classF [p(j )] according to the
number of rise steps, for any �xed j � 1, we use a standard method, called
ECO-method, for the enumeration of combinatorial objects which admit
recursive descriptions in terms of generating trees, see [8, 32].

Let N be the set of paths generated by the algorithm described in Sec-
tion 2.2.1whose instances are coded by a sequence of labels in the generating
tree ending by a non-marked label andM be the set of instances coded by
a sequence of labels ending by a marked label. ThenF [p(j )] = N nM .

The paths in N with n rise steps are obtained from the paths inN with
n � 1 rise steps by means of the �rst production of (2.10) and from those in
M with n � j � 1 rise steps by means of the second production of (2.10).
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The paths in M with n rise steps are obtained from the paths inM with
n � 1 rise steps by means of the �rst production of (2.10) and from those in
N with n � j � 1 rise steps by means of the second production of (2.10).

So, given a path! 2 F with n(! ) rise steps and ending point at ordinate
h(! ), from the succession rule (2.10) we have:

N (x; y) = 1 +
X

! 2 N

0

@
h(! )+1X

i =0

xn(! )+1 yi + xn(! )+1 y0

1

A +

+
X

! 2 M

0

@
h(! )+1X

i =0

xn(! )+ j +1 yi + xn(! )+ j +1 y0

1

A

M (x; y) =
X

! 2 M

0

@
h(! )+1X

i =0

xn(! )+1 yi + xn(! )+1 y0

1

A +

+
X

! 2 N

0

@
h(! )+1X

i =0

xn(! )+ j +1 yi + xn(! )+ j +1 y0

1

A

Since
P

! 2 N

� P h(! )+1
i =0 xn(! )+1 yi + xn(! )+1 y0

�
=

=
P

! 2 N xn(! )+1
�

yh ( ! )+2 � 1
y� 1 + 1

�
= xy 2

y� 1N (x; y) � x
y� 1N (x; 1) + x N (x; 1),

going on in the same way with the other terms we obtain:

N (x; y) = 1 +
xy2

y � 1
N (x; y) �

x
y � 1

N (x; 1) + x N (x; 1) +

+
x j +1 y2

y � 1
M (x; y) �

x j +1

y � 1
M (x; 1) + x j +1 M (x; 1)

M (x; y) =
xy2

y � 1
M (x; y) �

x
y � 1

M (x; 1) + x M (x; 1) +

+
x j +1 y2

y � 1
N (x; y) �

x j +1

y � 1
N (x; 1) + x j +1 N (x; 1)

SinceFj (x; y) = N (x; y) � M (x; y) then

Fj (x; y) = 1 +
xy2

y � 1
Fj (x; y) �

x
y � 1

Fj (x; 1) +

+ x F j (x; 1) �
x j +1 y2

y � 1
Fj (x; y) +

+
x j +1

y � 1
Fj (x; 1) � x j +1 Fj (x; 1)
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and

(y � 1 � x(1 � x j )y2)Fj (x; y) = y � 1 � xF j (x; 1) + x(y � 1) Fj (x; 1) +

+ x j +1 Fj (x; 1) � x j +1 (y � 1)Fj (x; 1)

Going on and using the kernel method [8] we obtain the generating func-
tion Fj (x) for the words ! 2 F [p(j )] , for any �xed j � 1, according to the
number of ones:

Fj (x) = Fj (x; 1) =
1 � y0(x)

x(y0(x) � 2)(1 � x j )

where

y0(x) =
1 �

p
1 � 4x(1 � x j )

2x(1 � x j )
:

Note that, for p(j ) = p(1) = 110, the generating function Fj (x) coincides
with ( 2.1) in Section 2.1 and the �rst number of the sequence enumerating
the binary words in F [p(1)] , according to the number of ones, are:

1; 3; 7; 15; 31; 63; 127; 255; 511; 1023; : : :

.

2.3 A generating algorithm forF [p(j;j )]

In this section, we study the construction and the enumeration of the
class F [p(j;j )] , where p(j; j ) = 1 j 0j , for any �xed j � 1, which is a slight
modi�cation of study in Section 2.2.1.

2.3.1 A construction for the class F [p(j;j )]

In this section, we de�ne an algorithm to construct the set F [p(j;j )] , where
p(j; j ) = x j x j = 1 j 0j , for any �xed j � 1. The growth of the set, according to
the number of rise steps or equivalently the number of ones, can be described
by the following jumping and marked succession rule:

(2.11)

8
>>>><

>>>>:

(0)

(k) 1 (k + 1)( k) � � � (1)(02)(01) k � 0

(0)
j

 (02)

(k)
j

 (k)(k � 1) � � � (1)(02)(01) k � 1

This rule can be represented as a tree having its root labelled (0) and
where each node with label (k) at level n gives k + 3 sons at level n + 1
labelled (k + 1) ; � � � ; (1); (02); (01) and k + 2 sons at level n + j with labels
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(k); � � � ; (1); (02); (01), if k � 1, or only one son with label (02) at level n + j
if k = 0. The generating algorithm associates a lattice path inF [p(j;j )] to a
sequence of labels obtained by means of the succession rule (2.11). This give
a construction for the set F [p(j;j )] according to the number of rise steps or
equivalently the number of ones.

The axiom (0) is associated to the empty path" .
A lattice path ! 2 F , with n rise steps and such that its endpoint has
ordinate k, provides k + 3 lattice paths with n + 1 rise steps, according to
the �rst production of ( 2.11) having k + 1 ; : : : ; 1; 0; 0 as endpoint ordinate,
respectively.

As in Section 2.2.1, the �rst k + 2 paths are obtained by adding to
! a sequence of steps consisting of one rise step followed byk + 1 � h,
0 � h � k + 1, fall steps (see Figure2.1 in Section 2.2.1).

Each lattice path so obtained has the property that its rightmost su�x
beginning from the x-axis, either remains strictly above the x-axis itself or
ends on thex-axis by a fall step. Note that in this way the paths ending
on the x-axis and having a rise step as last step are never obtained. These
paths have the label (01) of the �rst production in ( 2.11).

We de�ne a marked forbidden pattern p(j; j ) as a pattern p(j; j ) = x j x j

whose steps cannot be split, that is they must always be contained all to-
gether in that de�ned sequence. We say that a point is strictly contained in
a given marked forbidden pattern p(j; j ) if it is in p(j; j ) and it is di�erent
from both its initial point and its last point. We denote a marked forbidden
pattern by marking its peak.

A cut operation, i.e the procedure which splits a given path into two
subpaths, is not possible within a marked forbidden patternp(j; j ). After a
cut operation, it is not allowed to switch any rise step with a fall one, and
viceversa, inside a marked forbidden pattern, but it can be translated.

A lattice path ! 2 F , with n rise steps and such that its endpoint has
ordinate 0, provides one lattice path, with n + j rise steps, according to
the second production of (2.11), having 0 as endpoint ordinate, obtained by
adding to ! a sequence of steps consisting of the marked forbidden pattern
p(j; j ) (see Figure2.19).

j p(j,j)

(0) (0 )2

Figure 2.19: The mapping associated to (0)
j

 (02) of (2.11)

A lattice path ! 2 F , with n rise steps and such that its endpoint has
ordinate k � 1, providesk + 2 lattice paths, with n + j rise steps, according
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to the last production of ( 2.11), having k; : : : ; 1; 0; 0 as endpoint ordinate,
respectively. The �rst k + 1 labels are obtained by adding to ! a sequence
of steps consisting of the marked forbidden patternp(j; j ) followed by k � h,
0 � h � k, fall steps (see Figure2.20). Each lattice path so obtained has the
property that its rightmost su�x beginning from the x-axis either remains
strictly above the x-axis itself or ends on thex-axis by a fall step.

At this point the label (0 1) due to the productions of (2.11) yields lattice
paths which either do not contain marked forbidden patterns in its rightmost
su�x and end on the x-axis by a rise step or having the rightmost marked
point with ordinate less than j .

(

p(j,j) p(j,j) p(j,j) p(j,j)

)k( −1)(k

k −1k

)(0  2

1

)k

k

(1)

j

Figure 2.20: The mapping associated to (k)
j

 (k) : : : (1)(02) of (2.11)

In order to obtain the label (01) according to the �rst production of
(2.11), we consider the path! 0obtained from ! by adding a sequence of steps
consisting of one rise step followed byk fall steps, while in order to obtain the
label (01) according to the second production of (2.11), we consider the path
! 0 obtained from ! by adding a sequence of steps consisting of the marked
forbidden pattern p(j; j ) = x j x j followed by k � 1 fall steps. By applying
the previous actions, a path! 0 can be written as ! 0 = v' 0, where ' 0 is the
rightmost su�x in ! 0beginning from the x-axis and strictly remaining above
the x-axis.

As in Section 2.2.1, we distinguish two cases: in the �rst one' 0 does not
contain any marked point and in the second one' 0 contains at least one
marked point.

If the su�x ' 0 does not contain any marked point, then the desired label
(01) is associated to the pathv(' 0)cx, where (' 0)c is the path obtained from
' 0 by switching rise and fall steps (see Figure2.3 is Section2.2.1).

If the su�x ' 0 contains marked points, then the desired label (01) is
associated to the path obtained by applying cut and paste actions described
in Section 2.2.1.

At this point, we have the complete mapping de�ned by the succession
rule (2.11).

2.3.2 Proving the construction

The above construction generates 2C copies of each path havingC for-
bidden patterns such that 2C� 1 instances are coded by a sequence of labels
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ending by a marked label, say (k), and contain an odd number of marked
forbidden patterns, and 2C� 1 instances are coded by a sequence of labels end-
ing by a non-marked label, say (k), and contain an even number of marked
forbidden patterns. This is due to the fact that when a path is obtained ac-
cording to the �rst production of ( 2.11) then no marked forbidden pattern
is added. Moreover, when a path is obtained according to the other produc-
tions of (2.11) exactly one marked forbidden pattern is added. In any case,
the actions performed to obtain the label (01) do not change the number of
marked forbidden patterns in the path itself.

Theorem 2 The generating tree of the paths inF [p(j;j )] , where p(j; j ) =
x j x j , j � 1, according to the number of rise steps, is isomorphic to the
tree having its root labelled (0) and recursively de�ned by the succession
rule (2:11).

The proof of the Theorem 2 is analogous to the proof of Theorem1 and
it is omitted for brevity.

2.3.3 Enumeration of F [p(j;j )]

As in Section2.2.1, in order to obtain the enumeration of the classF [p(j;j )]

according to the number of rise steps, for any �xedj � 1, we use a standard
method, called ECO-method, for the enumeration of combinatorial objects
which admit recursive descriptions in terms of generating trees, see [8, 32].

let Z be the set of paths whose instances are coded by a sequence of
labels in the generating tree ending by a non-marked zero,S be the set of
paths whose instances are coded by a sequence of labels ending by a marked
zero, N be the set of paths whose instances are coded by a sequence of
labels ending by a non-markedk � 1 and M be the set of paths whose
instances are coded by a sequence of labels ending by a markedk � 1. Then
F [p(j;j )] = ( Z nS) [ (N nM ).

The succession rule (2.11) can be written as:

(2.12)

8
>>>>>><

>>>>>>:

(0)

(0)
1

 (1)(02)(01)

(k) 1 (k + 1)( k) � � � (1)(02)(01) k � 1

(0)
j

 (02)

(k)
j

 (k)(k � 1) � � � (1)(02)(01) k � 1

Let us denote by n(! ) the number of rise steps of a path! 2 F and by
h(! ) the last point's ordinate of ! itself. From the succession rule (2.12) we
have:

(2.13) Z (x; 1) = 1 + 2 xZ (x; 1) + 2xN (x; 1) + x j S(x; 1) + 2x j M (x; 1);
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(2.14) S(x; 1) = 2xS(x; 1) + 2xM (x; 1) + x j Z (x; 1) + 2x j N (x; 1);

(2.15) N (x; y) = xyZ (x; 1) +
X

! 2 N

h(! )+1X

i =1

xn(! )+1 yi +
X

! 2 M

h(! )X

i =1

xn(! )+ j yi ;

(2.16) M (x; y) = xyS(x; 1) +
X

! 2 M

h(! )+1X

i =1

xn(! )+1 yi +
X

! 2 N

h(! )X

i =1

xn(! )+ j yi :

Since
P

! 2 N
P h(! )+1

i =1 xn(! )+1 yi =
P

! 2 N xn(! )+1
�

yh ( ! )+2 � y
y� 1

�
=

= xy 2

y� 1N (x; y) � xy
y� 1N (x; 1) going on in the same way with the other terms,

then (2.15) and (2.16) can rewritten as:

N (x; y) = xyZ (x; 1)+
xy2

y � 1
N (x; y)�

xy
y � 1

N (x; 1)+
x j y

y � 1
M (x; y)�

x j y
y � 1

M (x; 1);

M (x; y) = xyS(x; 1)+
xy2

y � 1
M (x; y)�

xy
y � 1

M (x; 1)+
x j y

y � 1
N (x; y)�

x j y
y � 1

N (x; 1):

SinceT(x; y) = N (x; y) � M (x; y) then:

T(x; y) = xy(Z (x; 1) � S(x; 1)) +
(xy2 � x j y)

y � 1
T(x; y) �

(xy � x j y)
y � 1

T(x; 1)

that is

T(x; y)(y � 1� xy2 + x j y) = xy(y � 1)(Z (x; 1) � S(x; 1)) � (xy � x j y)T(x; 1):

Let y0(x) = x j +1 �
p

(x j +1) 2 � 4x
2x be a solution of xy2 � (x j + 1) y + 1 = 0. For

any j > 1, we have:

(2.17) T(x; 1) =
y0(x) � 1
1 � x j � 1 (Z (x; 1) � S(x; 1))

so obtaining the desired equation according to the number of ones, only.
From (2.13) and (2.14) we obtain:

(2.18) W (x; 1) = Z (x; 1) � S(x; 1) =
1 + 2x(1 � x j � 1)T(x; 1)

1 � 2x + x j :

By solving (2.17) and (2.18) we have:

T(x; 1) =
y0(x) � 1

(1 � x j � 1)(1 + x j � 2xy0(x))
;
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W (x; 1) =
1

(1 + x j � 2xy0(x))
:

Therefore the generating function Fjj (x), j > 1, for the words ! 2 F [p(j;j )]

according to the number of ones is:

Fjj (x) = T(x; 1) + W (x; 1) =
y0(x) � x j � 1

(1 � x j � 1)(1 + x j � 2xy0(x))
:

Let us remark that the generating function Fjj (x) depends only on the
number of ones in the forbidden pattern.

Example 1 Let p(j; j ) = p(4; 4), the �rst numbers of the sequence enumer-
ating the binary words in F [p(4;4)] , according to the number of ones, are:
1; 3; 10; 35; 125; 454; 1671; 6211; 23261; � � � being

F44(x) =
1 � x4 �

p
x8 + 2x4 + 1 � 4x

2x(1 � x3)
p

x8 + 2x4 + 1 � 4x

the associated generating function.

In the casej = 1, from ( 2.13) and (2.14) we haveW(x; 1) = 1+ xW (x; 1),
and from (2.15) and (2.16) we obtain T(x; y) = xyW (x; 1) + xyT (x; y) that
is

W (x; 1) =
1

1 � x
; T(x; 1) =

x
(1 � x)2 :

Therefore the generating functionF11(x) is:

F11(x) = T(x; 1) + W (x; 1) =
1

(1 � x)2

that is F11(x) is the generating function of the successionxn = n +1, n � 1.
Indeed, when j = 1, the set F [p(1;1)] of binary words with n ones and

avoiding the forbidden pattern p = 10 is F [p(1;1)] = f 0m 1n j 0 � m � ng.

2.4 A generating algorithm forF [p(j;i )]

In this section, we focus on the generalization of the �xed forbidden
pattern p, passing fromp(j ) = 1 j +1 0j , j � 1, to p(j; i ) = 1 j 0i , 0 < i < j . It
is possible to adapt the algorithm constructing the classF [p(j )] with p(j ) =
1j +1 0j , j � 1, to the classF [p(j;i )] for any p(j; i ) = 1 j 0i , 0 < i < j .

In this case the theory of Riordan arrays is not applicable, neither the
algorithmic approach allows to obtain their generating functions. Anyway it
gives us a way to construct all the objects in this class.
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2.4.1 A construction for the class F [p(j;i )]

In this section, we propose an algorithm to construct the setF [p(j;i )] ,
where p(j; i ) = x j x i = 1 j 0i , 0 < i < j . The growth of the set, according
to the number of rise steps or equivalently the number of ones, can be
synthetically expressed by means of a jumping and marked succession rule
which is sensible to the shape of the path inF which is applied to.

First of all, we de�ne a marked forbidden pattern p(j; i ) as a pattern
p(j; i ) = x j x i , 0 < i < j , whose steps cannot be split, that is, they must
always be contained all together in that de�ned sequence. We say that a
point is strictly contained in a given marked forbidden pattern p(j; i ) if it is
in p(j; i ) and it is di�erent from both its initial point and its last point. We
denote a marked forbidden pattern by marking its peak.

A cut operation, i.e the procedure which splits a given path into two
subpaths, is not possible within a marked forbidden patternp(j; i ). After a
cut operation, it is not allowed to switch any rise step with a fall one, and
viceversa, inside a marked forbidden pattern, but it can be translated.

In order to study the enumeration and the construction for the class
F [p(j;i )] , we have to distinguish two cases depending on the shape of the
paths in F .

De�nition 1 A path ! in F is a �-path if:

� it ends on the x-axis (see Figure2.21.a));

� the ordinate of its endpoint is greater than 0 and its rightmost su�x
' begins from thex-axis by a rise step and strictly remains above the
x-axis itself. The su�x ' can contain marked forbidden patternsp(j; i )
(see Figure 2.21.b)) or not (see Figure 2.21.c)). If ' contains marked
forbidden patternsp(j; i ), then their marked points have ordinateb � j .

De�nition 2 A path ! in F is a �-path if the ordinate of its endpoint is
greater that 0 and its rightmost su�x ' � begins from thex-axis by a fall
step and contains at least one marked forbidden patternp(j; i ) such that its
marked point has ordinateb with i < b < j (see Figure 2.21.d)).

ϕ
  p(j,i)

  p(j,i)

  p(j,i)   p(j,i)

a) b) c) d)

ϕ

ϕ

Figure 2.21: Some examples of paths inF
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� -paths in F

For each �-path ! in F having k as ordinate of its endpoint, we apply
the following succession rule (2.19), for each k � 0:

(2.19)

8
><

>:

(0)

(k)
1

 (k + 1)( k) � � � (2)(1)(0) 2

(k)
j

 (k + j � i ) : : : (s + 1) (s)(s � 1)2 : : : (1)s(0)s+1

In the second production of (2.19), the parameter s, with s � 0, is related
to the shape of the �-path ! and the way to �nd s will be described later
in this section.

We de�ne an algorithm which associates a �-path in F to a sequence of
labels obtained by means of the succession rule (2.19).

The axiom (0) is associated to the empty path" .
A �-path ! 2 F , with n rise steps and such that its endpoint has ordi-
nate k, provides k + 3 lattice paths, with n + 1 rise steps, according to the
�rst production of ( 2.19) having k + 1 ; k; : : : ; 1; 0; 0 as endpoint ordinate,
respectively.

In the similar way described in Section2.2.1, the �rst k + 2 labels are
obtained by adding to ! a sequence of steps consisting of one rise step
followed by k + 1 � h fall steps for eachh, 0 � h � k + 1, see Figure 2.1 in
Section 2.2.1.

Each lattice path so obtained has the property that its rightmost su�x
beginning from the x-axis, either remains strictly above the x-axis itself or
ends on thex-axis by a fall step. Note that in this way, the paths ending on
the x-axis by a rise step are never obtained. These paths are bound to the
last label (0) of the �rst production in ( 2.19).

In order to obtain the last label (0) according to the �rst production
of (2.19), we consider the path ! 0 obtained from ! by adding a sequence
of steps consisting of one rise step followed byk fall steps. By applying
the previous actions, a path! 0 can be written as ! 0 = v' 0, where ' 0 is the
rightmost su�x in ! 0beginning from the x-axis and strictly remaining above
the x-axis.

In the similar way described in Section2.2.1, we distinguish two cases:
in the �rst one ' 0 does not contain any marked point and in the second one
' 0 contains at least one marked point.

If the su�x ' 0 does not contain any marked point, then the desired label
(0) is associated to the pathv(' 0)cx, where (' 0)c is the path obtained from
' 0 by switching rise and fall steps, see Figure2.3 in Section 2.2.1.

If the su�x ' 0 contains marked points, let z = ( xz; yz) be the leftmost
point in ' 0 having highest ordinate, and not strictly contained in a marked
forbidden pattern.

The desired label (0) is associated to the path obtained by applying
cut and paste actions - described in Section2.2.1 - which consist on the
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concatenation of a fall step x with the path in ' 0 running from z to the
endpoint of the path, called � , and the path running from the initial point
in ' 0 to z, called � , see Figure2.5 in Section 2.2.1.
This last mapping can be inverted as in Section2.2.1. In particular, let d be
the rightmost fall step in a path ! � labelled (0) beginning from the x-axis
and such that each marked point, on its right, has ordinate less thanj . Let
us ! � = v' � , where ' � is the rightmost su�x in ! � beginning with d and let
P be the rightmost point in ' � having lowest ordinate. The inverted lattice
path of ! � is given by v�� , where � is the path in ' � running from P to
the endpoint of the path and � is the path ' � running from the endpoint of
d to P, see Figure2.6 in Section 2.2.1.

Let the parameter s be �xed, a �-path ! 2 F , with n rise steps and such
that its endpoint has ordinate k, provides 1 + k + j � i +

P s
m=1 m lattice

paths, with n + j rise steps, according to the second production of (2.19).
The �rst 1+ k + j � i lattice paths have k + j � i; k + j � i � 1; : : : ; s; : : : ; 2; 1; 0
as endpoint ordinate, respectively, and concerning the remaining

P s
m=1 m

lattice paths each m of them has s � m as endpoint ordinate, for eachm,
1 � m � s.

The �rst 1+ k+ j � i lattice paths are obtained by adding to ! a sequence
of steps consisting of the marked forbidden patternp(j; i ) = x j x i followed
by k + j � i � h fall steps for eachh, 0 � h � k + j � i , (see Figure2.22).

Each lattice path so obtained has the property that its rightmost su�x
beginning from the x-axis, either remains strictly above the x-axis itself or
ends on thex-axis by a fall step. The

P s
m=1 m marked labels according to

the second production of (2.19), must give lattice paths having the rightmost
marked point with ordinate less than j .

j s

s

p(j,i) p(j,i)

p(j,i)p(j,i)p(j,i)

k + j − i − 1 

k + j − i − 1 

k + j − i

k + j − i

1

)(k )( ( ) ( )

1 0( ) )(

k

Figure 2.22: The mapping associated to (k)
j

 (k + j � i )(k + j � i � 1) : : :
: : : (s) : : : (1)(0) of (2.19)

In order to obtain the
P s

m=1 m marked labels according to the second
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production of (2.19), we consider the paths! 00obtained from ! = v' , where
' is the rightmost su�x in ! beginning from the x-axis and strictly remain-
ing above thex-axis, by adding a sequence of steps consisting of the marked
forbidden pattern p(j; i ) = x j x i followed by k + j � i � m fall steps, for each
m, 1 � m � s. Therefore, we consider the just obtained paths labelled with
(m), for each m, 1 � m � s, which are represented in Figure2.22.

By applying the previous actions, a path ! 00can be written as
! 00= ! p(j; i )xk+ j � i � m = v' p(j; i )xk+ j � i � m = v' 00, 1 � m � s, where ' 00is
the rightmost su�x in ! 00beginning from the x-axis and strictly remaining
above thex-axis (see Figure2.23).

  p(j,i)

21s yy
s

z
s2

1

m

y

z

s

ϕ
  p(j,i)

Figure 2.23: A representation of ! 00= ! p(j; i )xk+ j � i � m = v' 00, 1 � m � s

Let z = ( xz; yz) be the leftmost point in ' 00having highest ordinate and
not strictly contained in a marked forbidden pattern. Let s1 = ( xs1 ; ys1 ) be
the point in ' 00on the left of z, having highest ordinate and not strictly
contained in a marked forbidden pattern. Let s2 = ( xs2 ; ys2 ) be the point
in ' on the right of z, having lowest ordinate and not strictly contained in
a marked forbidden pattern. Then the parameter s in the second produc-
tion of ( 2.19) is s = min f yz � ys1 ; ys2 g. When z is contained in the su�x
p(j; i )xk+ j � i � m of ! 00, 1 � m � s, then s2 does not exist and sos = yz � ys1 .

By setting s = min f yz � ys1 ; ys2 g we assure that, in the reverse of the
cut and past actions, the point which must be taken into consideration is
exactly P (see Figure2.24).

Remind that, from the reverse of the cut and paste actions, the pointP
is de�ned as the rightmost point in ' � having lowest ordinate. This means
that two conditions must be veri�ed: the former one establishes that the
ordinate of P must be the lowest in the path ' � and the latter condition
establishes that, if there are two or more points in ' � having the same
lowest ordinate then P is the rightmost one. In order to verify the former
condition, the absolute value of the ordinate of the point s1 in ' � , that is
c1 = yz � m + 1 � ys1 , must be greater than 0, that is m < y z � ys1 + 1.
Moreover in order to verify the latter condition, the ordinate of the point
s2, that is c2 = yz � ys2 + 1, must be less than or equal toyz � m + 1, that
is m � ys2 . So s = min f yz � ys1 ; ys2 g assures that the two conditions are
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  p(j,i)

y − m+1
z

P

c1

1s2

2s

c

ϕ

  p(j,i)

Figure 2.24: A graphical representation of the path v' � obtained by applying the
cut and paste actions to the path ! 00

veri�ed as s is the upper value which can getm.
By performing the cut and paste actions on each! 00, we obtain s paths

labelled (m � 1) for each m, 1 � m � s. By adding g fall steps for each
g, 0 < g � m � 1, to each of such paths (see Figure2.25), we obtain the
complete mapping associated to the second production of (2.19).

Note that, we apply the cut and paste actions to the paths! 00exclusively.
Indeed, by performing the cut and paste actions to the paths obtained from
! by adding a sequence of steps consisting of the marked forbidden pattern
p(j; i ) = x j x i followed by m0 fall steps, for eachm0, 0 � m0 < k + j � i � s,
we have already obtained paths.

Figure 2.26 shows the complete mapping according to the rule (2.19) on
an example with the pattern p(j; i ) = x5x2.

� -paths in F

For each �-path ! in F having k as ordinate of its endpoint, we apply
the following succession rule, for eachk � 1:

(2.20)

(
(k)

1
 (k + 1)( k) � � � (2)(1)(0)

(k)
j

 (k + j � i )(k + j � i � 1) � � � (2)(1)(0)

A �-path ! 2 F , with n rise steps and such that its endpoint has or-
dinate k, provides k + 2 lattice paths, with n + 1 rise steps, according to
the �rst production of ( 2.20) having k + 1 ; k; : : : ; 2; 1; 0 as endpoint ordi-
nate, respectively. These labels are obtained by adding to! a sequence of
steps consisting of one rise step followed byk + 1 � h fall steps for eachh,
0 � h � k + 1.

Moreover, a �-path ! 2 F with n rise steps and such that its endpoint has
ordinate k, provides 1+k+ j � i lattice paths, with n+ j rise steps, according
to the second production of (2.20) having k + j � i; k + j � i � 1; : : : ; 2; 1; 0 as
endpoint ordinate, respectively. These labels are obtained by adding to! a
sequence of steps consisting of the marked forbidden patternp(j; i ) = x j x i

followed by k + j � i � h fall steps, 0� h � k + j � i .

45



CHAPTER 2. SINGLE PATTERN AVOIDANCE

p(j,i)

( s − 1)

)s − 1(

k )(

k

s − 2

s − 2s − 1

s − 1

)s

s

)s +1

s +1

j

(

p(j,i)

p(j,i)

p(j,i)

p(j,i)p(j,i)

p(j,i)

p(j,i)p(j,i)

p(j,i)

p(j,i)

p(j,i)

1

1

k + j − i

k + j − i )(

(

1

0

( )

)(

( )1

( )0

(0)

)(0

( )

Figure 2.25:
The mapping associated to (k)

j
 (k + j � i ) : : : (s)(s � 1)2 : : : (1)s(0)s+1 of (2.19)

Figure 2.27 shows the complete mapping according to the rule (2.20) on
an example with the pattern p(j; i ) = p(5; 2) = x5x2.

2.4.2 Proving the construction

The just described construction, both for �-paths and �-paths in F ,
generates 2C copies of each path havingC forbidden patterns such that 2C� 1

are coded by a sequence of labels ending by a marked label, say (k), and
contain an odd number of marked forbidden pattern, and 2C� 1 are coded by
a sequence of labels ending by a non-marked label, say (k), and contain an
even number of marked forbidden pattern. For example, Figure2.28 shows
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5

(0)

(0)

(1)

(2)

(3)

(4)

(3) (5)

(4)

(3)

(2)

(1)

(0)

(2)

(1)

(1)

(0)

(0)

(0)

(6)

1

Figure 2.26: The mapping associated to the succession rule (2.19), being p(j; i ) =
x5x2

the 4 copies of a given path having two forbidden patternsp(j; i ) = p(5; 2) =
x5x2. The sequence of labels below each path is obtained by descending into
the generating tree associated to the construction from the root to the path
itself. This observation is due to the fact that when a path is obtained
either according to the �rst production of ( 2.19) or according to the �rst
production of (2.20) then no marked forbidden pattern is added. Moreover
when a path is obtained either according to the second production of (2.19)
or according to the second production of (2.20) then exactly one marked
forbidden pattern is added. In any case, the actions performed to obtain
either the �rst label (0) according to the �rst production of ( 2.19) or theP s

m=1 m marked labels, according to the second production of (2.19), do
not change the number of marked forbidden patterns in the path.
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5

(1)

(2)

(1)

(0)

(4)

(3)

(2)

(1)

(0)

1

Figure 2.27: The mapping associated to the succession rule (2.20), being p(j; i ) =
p(5; 2) = x5x2

(1)(2)(3)(4)(3)(4)(5)(6)(7)(6) (3)(6)(3)(4)(5)(6)(7)(6)(1)(2)(3)(4)(3)(6)

Figure 2.28: The 4 copies of a given path having 2 forbidden patterns,p(j; i ) =
p(5; 2) = x5x2

Theorem 3 The generating tree of the paths inF [p(j;i )] , where p(j; i ) =
x j x i , 0 < i < j , according to the number of rise steps, is isomorphic to
the tree having the root labelled(0) and recursively de�ned by the succession
rules (2.19) and (2.20), related to the shape of the path! 2 F .

Proof. We have to show that the algorithm described in the previous
pages is a construction for the setF [p(j;i )] , according to the number of rise
steps. Therefore, all the paths inF with n rise steps must be obtained and
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for each obtained path ! in F nF [p(j;i )] having n rise steps, containingC
forbidden patterns and having ordinate of its endpoint equal to k, is also
generated a path! in F nF [p(j;i )] having n rise steps, containingC forbidden
patterns, having ordinate of its endpoint equal to k and having the same
shape as! but such that the last forbidden pattern is marked if it is not in
! and vice-versa. This means that the last label of the code associated to!
is (k) while the one associated to! is (k).

The �rst assertion is an immediate consequence of the construction ac-
cording to the �rst production of ( 2.19).

In order to prove the second assertion we have to distinguish two cases
(which in their turn are subdivided in 4 and 2 subitems respectively) de-
pending on the fact that the last forbidden pattern is marked or not. For
sake of completeness we report the entire proof, which is indeed rather cum-
bersome. Anyhow, the reader could skip all the subitems, except the �rst
ones. In fact, all the other ones, are slight modi�cations of the �rst subitem.

We denote by h the ordinate of the peak of the last forbidden pattern.

First case: the last forbidden pattern in ! is marked. We consider the
following subcases:h � j , 0 < h < j , h = 0 and h < 0.

h � j : Each path ! in F nF [p(j;i )] can be written as ! = �x j x f � , where
� 2 F , � 2 F [p(j;i )] and i � f � d + j where d � 0 is the ordinate of
the endpoint of � (see Figure2.29).

µ

h

d

ν

Figure 2.29: A representation of the path ! in the caseh � j

If � is a �-path then the path ! which kills ! is obtained by performing
on � the following: add the path x j � 1 by applying j � 1 times the
mapping associated to (k) 1 (k + 1) of the �rst production of ( 2.19);

add xx f by applying the mapping associated to (k)
1

 (d + j � f )
of the �rst production of ( 2.19). Otherwise, if � is a �-path then the
path ! which kills ! is obtained by performing on � the following:
add the path x j � 1 by applying j � 1 times the mapping associated
to (k) 1 (k + 1) of the �rst production of ( 2.20); add the path xx f

by applying the mapping associated to (k)
1

 (d + j � f ) of the �rst
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production of (2.20). In each case the path� in ! is obtained as in! .

0 < h < j : We consider the following subcases:h > i , h = i and h < i .

h > i : Each path ! in F nF [p(j;i )] can be written as ! = � xx j x f � ,
where �;  2 F , � 2 F [p(j;i )] and i � f � h (see Figure 2.30).
We observe that the path  can contain marked points, with
ordinate b < i , or not. If the path  contains no marked point,
then it remains strictly under the x-axis, otherwise the marked
forbidden patterns intersect the x-axis when 0� b < i .

µ

h

γ
ν

Figure 2.30: A representation of the path ! in the case 0< h < j with h > i

The path ! which kills ! is obtained by performing on � xx j � h

the following: add the path xh� 1 by applying h � 1 times the
mapping associated to (k) 1 (k + 1) of the �rst production of
(2.19); add the path xx f by applying the mapping associated to

(k)
1

 (h � f ) of the �rst production of ( 2.19). The path � in !
is obtained as in ! .

h = i : Each path ! in F nF [p(j;i )] can be written as! = � xx j x i � , where
�;  2 F and � 2 F [p(j;i )] (see Figure2.31).

µ

h

γ

ν

Figure 2.31: A representation of the path ! in the case 0< h < j with h = i

The path ! which kills ! is obtained by performing on � xx j � i
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the following: add the path x i � 1 by applying i � 1 times the
mapping associated to (k) 1 (k + 1) of the �rst production of
(2.19); add the path xx i by applying the mapping associated to

(k) 1 (0) of the �rst production of ( 2.19) for the second label
(0). The path � in ! is obtained as in ! .

h < i : Each path ! in F nF [p(j;i )] can be written as ! = � xx j x i �x� ,
where �;  2 F and �; � 2 F [p(j;i )] (see Figure2.32). We observe
that the path � remains strictly under the x-axis.

η

h

µ
ν

γ

Figure 2.32: A representation of the path ! in the case 0< h < j with h < i

The path ! which kills ! is obtained by performing on � xx j � h

the following: add the path xh� 1 by applying h � 1 times the
mapping associated to (k) 1 (k + 1) of the �rst production of
(2.19); add the path xxh by applying the mapping associated to

(k)
1

 (0) of the �rst production of ( 2.19) for the second label
(0); add the path x i � h �x by applying consecutive and appropri-

ate mappings associated to (k) 1 (k + 1) : : : (2)(1) of the �rst
production of (2.19) and these mappings must be completed by
performing the actions giving the �rst label (0) in case of no
marked points. The path � in ! is obtained as in ! .

h = 0: Each path ! in F nF [p(j;i )] can be written as ! = � xx j x i �x� , where
�;  2 F and �; � 2 F [p(j;i )] (see Figure2.33).

The path ! which kills ! is obtained by performing on � xx j the
following: add the path x i �x by applying consecutive and appropriate
mappings associated to (k)

1
 (k + 1) : : : (1) of the �rst production

of (2.19) and these mappings must be completed by performing the
actions giving the �rst label (0) in case of no marked points. The path
� in ! is obtained as in ! .

h < 0: Each path ! in F nF [p(j;i )] can be written as ! = � xx j x i �x� , where
�;  2 F and �; � 2 F [p(j;i )] (see Figure2.34).
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µ
η

γ

ν

Figure 2.33: A representation of the path ! in the caseh = 0

h

P

η

γ
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Figure 2.34: A representation of the path ! in the caseh < 0

We distinguish two subcases: in the �rst one the path  contains no
marked points and remains strictly under the x-axis and in the second
one the path  contains at least a marked point.

In the �rst subcase, the path ! which kills ! is obtained by performing
on � the following: add the path xx j x i �x by applying consecutive
and appropriate mappings associated to (k)

1
 (k + 1) : : : (2)(1) of the

�rst production of ( 2.19) and these mappings must be completed by
performing the actions giving the �rst label (0) in case of no marked
points. The path � in ! is obtained as in ! .

In the second subcase, we consider the rightmost pointP of the path
xx j x i �x with lowest ordinate. The path ! which kills ! is obtained
by performing on � the following: add the path in x j +1 x j �x run-
ning from P to the endpoint of the path by applying consecutive and
appropriate mappings associated to (k) 1 (k + 1) : : : (2)(1) of the
�rst production of ( 2.19) and by applying consecutive and appropri-

ate mappings associated to (k)
j

 (k + j � i ) : : : (2)(1) of the second
production of (2.19); add the path in x j x i �x running from its ini-
tial point to P by applying consecutive and appropriate mappings
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associated to (k) 1 (k + 1) : : : (2)(1) of the �rst production of ( 2.19)
and by applying consecutive and appropriate mappings associated to

(k)
j

 (k + j � i ) : : : (2)(1) of the second production of (2.19); apply
the cut and paste actions giving the �rst label (0) in case of marked
points. Obviously the last forbidden pattern in the path must be gen-
erated by applying consecutive and appropriate mappings of the �rst
production of (2.19). The path � in ! is obtained as in ! .

Second case: the last forbidden pattern in! is not a marked forbidden
pattern. We consider the following subcases:h � j and h < j .

h � j : Each path ! in F nF [p(j;i )] can be written as ! = �x j x f � , where
� 2 F , � 2 F [p(j;i )] and i � f � d + j where d � 0 is the ordinate of
the endpoint of � (see Figure2.35).

ν

h

d

µ

Figure 2.35: A representation of the path ! in the caseh � j

If � is a �-path then the path ! which kills ! is obtained by perform-
ing on � the following: add the path x j x f by applying the mapping

associated to (k)
j

 (d + j � f ) of the second production of (2.19).
Otherwise, if � is a �-path then the path ! which kills ! is obtained
by performing on � the following: add the path x j x f by applying the

mapping associated to (k)
j

 (d + j � f ) of the second production of
(2.20). In each case, the path� in ! is obtained as in ! .

h < j : We consider the following subcases:h > i , h = i and h < i .

h > i : Each path ! in F nF [p(j;i )] can be written as ! = � xx j x f � ,
where �;  2 F , � 2 F [p(j;i )] and i � f � h (see Figure 2.36).
We observe that the path  can contain marked points, with
ordinate b < i , or not. If the path  contains no marked point,
then it remains strictly under the x-axis, otherwise the marked
forbidden patterns intersect the x-axis when 0� b < i .
Let P be the rightmost point of the path xx j x i with lowest or-
dinate. The path ! which kills ! is obtained by performing on
� the following: add the path in x j x i running from P to the
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γ

P

h

µ ν

Figure 2.36: A representation of the path ! in the caseh < j with h > i

endpoint of the path by applying consecutive and appropriate
mappings associated to (k)

1
 (k + 1) : : : (2)(1) of the �rst pro-

duction of (2.19) and by applying consecutive and appropriate

mappings associated to (k)
j

 (k + j � i ) : : : (2)(1) of the sec-
ond production of (2.19); add the path in x j x i running from its
initial point to P by applying consecutive and appropriate map-
pings associated to (k) 1 (k + 1) : : : (2)(1) of the �rst production
of (2.19) and by applying consecutive and appropriate mappings

associated to (k)
j

 (k + j � i ) : : : (2)(1) of the second produc-
tion of (2.19); apply the cut and paste actions in case of marked
points and add the path x f � i according to the second production
of (2.19). Obviously the last forbidden pattern in the path must
be generated by applying the mapping of the second production
of (2.19). The path � in ! is obtained as in! . Note that, in case
of i � f < h , any pre�x of � in ! which running from the end
of the path � xx j x f to the x-axis is obtained by applying the
mapping associated to the �rst production of (2.20).

h = i : Each path ! in F nF [p(j;i )] can be written as! = � xx j x i � , where
�;  2 F and � 2 F [p(j;i )] (see Figure2.37).

Let P be the rightmost point of the path xx j x i with lowest or-
dinate. The path ! which kills ! is obtained by performing on
� the following: add the path in x j x i running from P to the
endpoint of the path by applying consecutive and appropriate
mappings associated to (k) 1 (k + 1) : : : (2)(1) of the �rst pro-
duction of (2.19) and by applying consecutive and appropriate

mappings associated to (k)
j

 (k + j � i ) : : : (2)(1) of the sec-
ond production of (2.19); add the path in x j x i running from its
initial point to P by applying consecutive and appropriate map-
pings associated to (k)

1
 (k + 1) : : : (2)(1) of the �rst production
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Figure 2.37: A representation of the path ! in the caseh < j with h = i

of (2.19) and by applying consecutive and appropriate mappings

associated to (k)
j

 (k + j � i ) : : : (2)(1) of the second produc-
tion of ( 2.19); apply the cut and paste actions giving the label
(0) in case of marked points. Obviously the last forbidden pattern
in the path must be generated by applying the mapping of the
second production of (2.19). The path � in ! is obtained as in! .

h < i : Each path ! in F nF [p(j;i )] can be written as ! = � xx j x i �x� ,
where �;  2 F and �; � 2 F [p(j;i )] (see Figure2.38).
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Figure 2.38: A representation of the path ! in the caseh < j with h < i

Let P be the rightmost point of the path xx j x i �x with lowest
ordinate. The path ! which kills ! is obtained by performing on
� the following: add the path in x j x i �x running from P to the
endpoint of the path by applying consecutive and appropriate
mappings associated to (k) 1 (k + 1) : : : (2)(1) of the �rst pro-
duction of (2.19) and by applying consecutive and appropriate

mappings associated to (k)
j

 (k + j � i ) : : : (2)(1) of the second
production of (2.19); add the path in x j x i �x running from its
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initial point to P by applying consecutive and appropriate map-
pings associated to (k) 1 (k + 1) : : : (2)(1) of the �rst production
of (2.19) and by applying consecutive and appropriate mappings

associated to (k)
j

 (k + j � i ) : : : (2)(1) of the second produc-
tion of ( 2.19); apply the cut and paste actions giving the label
(0) in case of marked points. Obviously the last forbidden pattern
in the path must be generated by applying the mapping of the
second production of (2.19). The path � in ! is obtained as in! .

We observe that for each path! in F nF [p(j;i )] having n rise steps, con-
taining C forbidden patterns and having last label (k) of the associated
code, there exists one and only one path! in F nF [p(j;i )] having n rise steps,
containing C forbidden patterns and having last label (k) of the associated
code. The paths! and ! have the same shape, exactly the same number and
positions of the forbidden patterns except for the last one which is marked
in ! if it is not in ! and vice-versa.

This assertion is consequence of the constructions in the proof, as the
described actions are univocally determined. Therefore, it is not possible
to obtain a path ! which kills a given path ! by applying two distinct
procedures. �
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3
Cross-bi�x-free sets

Cross-bi�x-free sets are sets of words such that no pre�x of any word is a
su�x of any other word. In this chapter, we introduce a general constructive
method for the sets of cross-bi�x-free binary words of �xed length. It enables
us to determine a cross-bi�x-free words subset which has the property to be
non-expandable and whose cardinality is greater than the ones known in the
literature till now [ 4].

This kind of sets play an important role in the �eld of Telecommunica-
tions but in the present work will be used to study strings avoiding set of
di�erent patterns.

3.1 Di�erent areas involving
In digital communication systems, synchronization is an essential re-

quirement to establish and maintain a connection between a transmitter
and a receiver.

Analytical approaches to the synchronization acquisition process and
methods for the construction of sequences with the best aperiodic auto-
correlation properties [13, 50, 51, 67] have been the subject of numerous
analyses in the digital transmission.

The historical engineering approach started with the introduction of bi-
�x, a name proposed by J. L. Massey as acknowledged in [59]. It denotes
a subsequence that is both a pre�x and su�x of a longer observed se-
quence. Rather than to the bi�x, much attention has been devoted to a
bi�x-indicator, an indicator function implying the existence of the bi�x [ 59].
Such indicators were shown to be without equal in performing various sta-
tistical analysis, mainly concerning the search process [7, 59], whose goal is
to �nd a �xed sequence in random data.

However, an analytical study of simultaneous search for a set of sequences
urged the invention of cross-bi�x indicators [4, 5] and, accordingly, turned
attention to the so called cross-bi�x-free sets, that is, the sets of words such
that no pre�x of any word is a su�x of any other word.
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In [4], the author analyzes some properties of binary words that form a
cross-bi�x-free set, giving a constructive method.

This approach leads to setsS(n) of cross-bi�x-free binary words, of �xed
length n, having cardinality 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233 for n =
3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15, respectively.

This sequence forms a Fibonacci progression and satis�es the recurrence
relation jS(n)j = jS(n � 1)j + jS(n � 2)j with jS(3)j = 1 and jS(4)j = 1.

The problem of determining cross-bi�x-free sets is also related to sev-
eral other scienti�c applications, for instance in frame synchronization for
multiaccess systems [6, 50, 70], pattern matching [26] and automata theory
[18].

3.2 Cross-bi�x-free words
Let A be a �nite, non-empty alphabet and  be a word in A � .
Let  = vwu then v is called pre�x of  and u is called su�x of  . A

bi�x of  is a subsequence of that is both its pre�x and su�x.
A word  of A+ is said to bebi�x-free or unbordered [43, 60] if and only

if no strict pre�x of  is also a su�x of  . Therefore,  is bi�x-free if and
only if  6= uwu, being u any necessarily non-empty word andw any word.
Obviously, a necessary condition for to be bi�x-free is that the �rst and
the last letters of  must be di�erent.

Example 2 In the monoid f 0; 1g� , the word 111010100of length n = 9 is
bi�x-free, while the word 101001010contains two bi�xes, 10 and 1010.

Let BF q(n) denote the set of all bi�x-free words of length n over an
alphabet of �xed size q. The following formula for the cardinality of BF q(n),
denoted by jBF q(n)j, is well-known [60].

(3.1)

8
>>>><

>>>>:

jBF q(1)j = q

jBF q(2n + 1) j = qjBF q(2n)j

jBF q(2n)j = qjBF q(2n � 1)j � j BF q(n)j

The number sequences related to this recurrence can be found in Sloane's
database of integer sequences [71]: sequences A003000 (q = 2), A019308
(q = 3) and A019309 (q = 4).

Table 3.1 lists the set BF 2(n), 2 � n � 6, the last row reports the
cardinality of each set.

Let q > 1 and n > 1 be �xed. Two distinct words  ;  0 2 BF q(n) are
said to becross-bi�x-free [7] if and only if no strict pre�x of  is also a su�x
of  0 and vice-versa.
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Table 3.1: The setBF 2(n), 2 � n � 6

n=2 n=3 n=4 n=5 n=6

10 01 100 001 1000 0001 10000 00001 100000 000001
110 011 1100 0011 10100 00101 101000 000101

1110 0111 11000 00011 101100 001101
11100 00111 110000 000011
11010 01011 110100 001011
11110 01111 111000 000111

111100 001111
110010 010011
111010 010111
111110 011111

2 4 6 12 20

Example 3 The binary words 111010100and 110101010in BF 2(9) are
cross-bi�x-free, while the binary words111001100and 110011010in BF 2(9)
have the cross-bi�x 1100.

A subset ofBF q(n) is said to becross-bi�x-free set if and only if for each
 ;  0, with  6=  0, in this set,  and  0 are cross-bi�x-free. This set is said
to be non-expandableon BF q(n) if and only if the set obtained by adding
any other word is not a cross-bi�x-free set. A non-expandable cross-bi�x-free
set on BF q(n) having maximal cardinality is called maximal cross-bi�x-free
set on BF q(n).

Each word  2 BF 2(n) can be naturally represented as a lattice path on
the Cartesian plane, by associating arise step, de�ned by (1; 1) and denoted
by x, to each 1's inBF 2(n), and a fall step, de�ned by (1; � 1) and denoted
by x, to each 0's in BF 2(n), running from (0 ; 0) to (n; h), � n < h < n .

From now on, we will refer interchangeably to words or their graphical
representations on the Cartesian plane, that is paths.

The de�nition of bi�x-free and cross-bi�x-free can be easily extended to
paths. Figure 3.1 shows the two paths corresponding to the cross-bi�x-free
words of Example3.

1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Figure 3.1: Two paths in BF 2(9) which are cross-bi�x-free
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A lattice path on the Cartesian plane using the steps (1; 1) and (1; � 1)
and running from (0; 0) to (2m; 0), with m � 0, is said to beGrand-Dyck or
Binomial path (see [23] for further details). A Dyck path is a sequence of
rise steps and fall steps running from (0; 0) to (2m; 0) and remaining weakly
above the x-axis (see Figure3.2). The number of 2m-length Dyck paths is
the mth Catalan number Cm = 1=(m + 1)

� 2m
m

�
, see [73] for further details.

m=3

m=1

m=2

Figure 3.2: The 2m-length Dyck paths, 1 � m � 3

In the next section of the present chapter we are interested in determining
one among all the possible non-expandable cross-bi�x-free sets of words of
�xed length n > 1 on the monoid f 0; 1g� . We denote this set byCBFS2(n).

In order to do so, we focus on the setB̂F 2(n) of bi�x-free binary words
of �xed length n having 1 as the �rst letter and 0 as the last letter or
equivalently the set of bi�x-free lattice paths on the Cartesian plane using
the steps (1; 1) and (1; � 1), running from (0; 0) to (n; h), � n < h < n ,
beginning with a rise step and ending with a fall step. Of course �BF 2(n) =
BF 2(n)nB̂F 2(n) is obtained by switching rise and fall steps.

Let B̂F
h
2(n) denote the set of the paths in B̂F 2(n) having h as the

ordinate of their endpoint, � n < h < n .

3.3 On the non-expandability ofCBFS2(n)
In order to prove that CBFS2(n) is a non-expandable cross-bi�x-free set

on BF 2(n) we have to distinguish the following two cases depending on the
parity of n.

3.3.1 Non-expandable CBFS2(2m + 1)

Let CBFS2(2m+1) = f x� : � 2 D2m g that is the set of paths beginning
with a rise step linked to a 2m-length Dyck path (see Figure3.3). Note that

CBFS2(2m + 1) is a subset of B̂F
1
2(2m + 1), m � 1.

Of coursejCBFS2(2m + 1) j = Cm , being Cm the mth Catalan number,
m � 1.
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2m2
CBFS  (2m+1) =  α

,  α D

Figure 3.3: A representation of CBFS2(2m + 1), with m � 1

Figure 3.4 shows the setCBFS2(7), with jCBFS2(7)j = C3 = 5.

CBFS  (7) ,,,,

1 1 0 1 0 1 01 1 0 1 1 0 01 1 1 0 0 1 01 1 1 0 1 0 01 1 1 1 0 0 0

=
2

Figure 3.4: A graphical representation of CBFS2(7)

Proposition 1 CBFS2(2m + 1) is a cross-bi�x-free set on BF 2(2m + 1) ,
m � 1.

Proof. The proof consists of two distinguished steps. The �rst one proves
that each  2 CBFS2(2m + 1) is bi�x-free and the second one proves that
CBFS2(2m + 1) is a cross-bi�x-free set. Each  2 CBFS2(2m + 1) can be
written as  = vwu, being v; u any necessarily non-empty word whilew can
be an empty word also. For each pre�x v of  we have jvj1 > jvj0 and for
each su�x u of  we have juj1 � j uj0. Therefore v 6= u, 8v; u 2  so  is
bi�x-free.

The proof that, for each  ;  0 2 CBFS2(2m + 1) then  and  0 are
cross-bi�x-free, is quite analogous to the one just illustrated, being = vwu
and  0 = v0w0u0 and comparing the pre�x v of  and the su�x u0 of  0. �

Proposition 2 CBFS2(2m + 1) is a non-expandable cross-bi�x-free set on
BF 2(2m + 1) , m � 1.

Proof. It is su�cient to prove that the set CBFS2(2m + 1) is a non-
expandable cross-bi�x-free set onB̂F 2(2m+1), as each 2 CBFS2(2m+1)
and ' 2 �BF 2(2m + 1) match on the last letter of  and the �rst one of '
at least.

Let m � 1 be �xed, we can prove that CBFS2(2m + 1) is a non-

expandable cross-bi�x-free set onB̂F
h
2(2m + 1) by distinguishing h > 0

from h < 0.
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h > 0 : a path  in B̂F
h
2(2m + 1) nCBFS2(2m + 1) can be written as  =

�x� 1x� 2x : : : x� r (see Figure3.5, wheren = 2m+1), being � a Grand-
Dyck path beginning with a rise step, x a rise step, � l Dyck paths,
for each l : 1 � l � r � 1, and � r a necessarily non-empty Dyck path.
Therefore, we can �nd paths in CBFS2(2m +1) having a pre�x which
matches with a su�x of  . The path  = x� r � in CBFS2(2m + 1),
being � a Dyck path of appropriate length, has the pre�x x� r which
matches with the su�x x� r of  .

φ r

2
1

α

αα

Figure 3.5: A graphical representation of a path  in B̂F
h
2 (n); h > 0

h < 0 : a path  in B̂F
h
2(2m + 1) can be written as  = � r x� r � 1x : : : x� 1x�

(see Figure3.6, where n = 2m + 1), being � r a necessarily non-empty
Dyck path, x a fall step, � l Dyck paths, for eachl : 1 � l � r � 1, and
� a Grand-Dyck path. Therefore, we can �nd paths in CBFS2(2m+1)
having a su�x which matches with a pre�x of  . The path  = x�� r

in CBFS2(2m + 1), being � a Dyck path of appropriate length, has
the su�x � r which matches with the pre�x � r of  .

1

φ

α

αα

1

r r−

Figure 3.6: A graphical representation of a path  in B̂F
h
2 (n); h < 0

�

3.3.2 Non-expandable CBFS2(2m + 2)

In this case we have to distinguish two further subcases depending on
the parity of m > 0.

62



3.3. ON THE NON-EXPANDABILITY OFCBFS2(N )

If m is an even number thenCBFS2(2m + 2) = f �x� x : � 2 D2i ; � 2
D2(m� i ) ; 0 � i � m

2 g, that is the set of paths consisting of the following
consecutive sub-paths: a 2i -length Dyck path, a rise step, a 2(m � i )-length
Dyck path, 0 � i � m

2 , a fall step (see Figure3.7). Note that CBFS2(2m+2)

is a subset ofB̂F
0
2(2m + 2), for any even number m > 1.

≤
2
m

i0,  2(m−i)β2iD

β
CBFS  (2m+2)

2
=  α

,  α D ≤

Figure 3.7: A representation of CBFS2(2m + 2), for any even number m > 1

Of course jCBFS2(2m + 2) j =
P m=2

i =0 Ci Cm� i , Cm is the mth Catalan
number, for any even numberm > 1. Figure 3.8 shows the setCBFS2(10),
with jCBFS2(10)j = C4 + C1C3 + C2C2 = 23.

,

2
CBFS  (10)

,,,,

,

,,,

,,,,,

,,,,,

1 1 0 0 1 1 1 0 0 01 1 0 0 1 1 0 1 0 01 0 1 0 1 1 0 1 0 0

1 0 1 0 1 1 1 0 0 01 0 1 1 0 1 0 1 0 01 0 1 1 0 1 1 0 0 01 0 1 1 1 0 0 1 0 01 0 1 1 1 0 1 0 0 0

1 0 1 1 1 1 0 0 0 01 1 0 1 0 1 0 1 0 0

1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0

1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0

1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0

=

,

Figure 3.8: A graphical representation of CBFS2(10) giving evidence to the ele-
ments corresponding toC4, C1C3 and C2C2 respectively

Proposition 3 CBFS2(2m + 2) is a cross-bi�x-free set on BF 2(2m + 2) ,
for any even numberm > 1.

Proof. The proof consists of two distinguished steps. The �rst one proves
that each  2 CBFS2(2m + 2) is bi�x-free and the second one proves that
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CBFS2(2m + 2) is a cross-bi�x-free set. Each  2 CBFS2(2m + 2) can be
written as  = vwu, being v; u any necessarily non-empty word whilew can
be an empty word also. Referring to Figure3.7, let m > 1 be �xed, we have
to take into consideration two di�erent cases: in the �rst one i = 0 and in
the second one 0< i � m

2 .
If i = 0 then  2 f x� x : � 2 D2m g, and for each pre�x v of  we have

jvj1 > jvj0 and for each su�x u of  we havejuj1 < juj0. Therefore v 6= u,
8v; u 2  , so  is bi�x-free.

Otherwise,  2 f �x� x : � 2 D2i ; � 2 D2(m� i ) ; 0 < i � m
2 g, then for each

pre�x v of  we havejvj1 � j vj0 and for each su�x u of  we havejuj1 � j uj0.
If jvj1 > jvj0 then v 6= u, 8v; u 2  and therefore  is bi�x-free. Let i be
�xed, if jvj1 = jvj0 then the path v is a 2k-length Dyck path, 1 � k � i . In
this case� = vv0, so eitheru = � x, where � is any su�x of � , or u = � 0x� x,
where � 0 is any su�x of v0. If u = � x then juj1 < juj0, therefore v 6= u,
8v; u 2  and therefore  is bi�x-free. If u = � 0x� x then v does not match
with x� x, therefore v 6= u, 8v; u 2  , so  is bi�x-free.

The proof that, for each  ;  0 2 CBFS2(2m + 2) then  and  0 are
cross-bi�x-free, is quite analogous to the one just illustrated, being = vwu
and  0 = v0w0u0 and comparing the pre�x v of  and the su�x u0 of  0. �

Proposition 4 CBFS2(2m + 2) is a non-expandable cross-bi�x-free set on
BF 2(2m + 2) , for any even numberm > 1.

Proof. It is su�cient to prove that the set CBFS2(2m + 2) is a non-
expandable cross-bi�x-free set onB̂F 2(2m+2), as each 2 CBFS2(2m+2)
and ' 2 �BF 2(2m + 2) match on the last letter of  and the �rst one of '
at least.

Let m > 1 be �xed, we have to take into consideration three di�erent
cases: in the �rst one we prove that CBFS2(2m + 2) is a non-expandable

cross-bi�x-free set on B̂F
h
2(2m + 2), h > 0, in the second one we prove that

CBFS2(2m + 2) is a non-expandable cross-bi�x-free set onB̂F
h
2(2m + 2),

h < 0, and in the last one we prove thatCBFS2(2m+2) is a non-expandable

cross-bi�x-free set on B̂F
0
2(2m + 2).

h > 0 : a path  in B̂F
h
2(2m +2) can be written as  = �x� 1x� 2x : : : x� r (see

Figure 3.5, where n = 2m + 2), being � a Grand-Dyck path beginning
with a rise step, x a rise step,� l Dyck paths, for eachl : 1 � l � r � 1,
and � r a necessarily non-empty Dyck path. Therefore, we can �nd
paths in CBFS2(2m + 2) having a pre�x which matches with a su�x
of  . The path  = x� r � x in CBFS2(2m + 2), being � a Dyck path of
appropriate length, has the pre�x x� r which matches with the su�x
x� r of  .
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3.3. ON THE NON-EXPANDABILITY OFCBFS2(N )

h < 0 : a path  in B̂F
h
2(2m + 2) can be written as  = � r x� r � 1x : : : x� 1x�

(see Figure3.6, where n = 2m + 2), being � r a necessarily non-empty
Dyck path, x a fall step, � l Dyck paths, for eachl : 1 � l � r � 1, and
� a Grand-Dyck path. Therefore, we can �nd paths in CBFS2(2m+2)
having a su�x which matches with a pre�x of  . The path  = x�� r x
in CBFS2(2m + 2), being � a Dyck path of appropriate length, has
the su�x � r x which matches with the pre�x � r x of  .

h = 0 : a path  in B̂F
0
2(2m + 2) nCBFS2(2m + 2) either never falls below

the x-axis or crosses thex-axis. In the �rst case, it can be written as
 = � 1x� 1x, where � 1 is a necessarily non-empty 2k-length Dyck path
and � 1 is a 2(m � k)-length Dyck path, with m

2 + 1 � k � m, see
Figure 3.9 a). Therefore, we can �nd paths in CBFS2(2m + 2) having
a pre�x which matches with a su�x of  . The path  = x� 1xx� x in
CBFS2(2m + 2), since x� 1x 2 D2i being i = m � k + 1, has the pre�x
x� 1x which matches with the su�x x� 1x of  .

If a path  in B̂F
0
2(2m + 2) nCBFS2(2m + 2) crosses thex-axis then

it can be written as  = � 1� where � 1 is a necessarily non-empty 2k-
length Dyck path, 1 � k � m, and � is a necessarily non-empty Grand-
Dyck path beginning with a fall step, see Figure3.9 b). Therefore, we
can �nd paths in CBFS2(2m + 2) having a su�x which matches with
a pre�x of  . The path  = x�� 1x in CBFS2(2m +2), being � a Dyck
path of appropriate length, has the su�x � 1x which matches with the
pre�x � 1x of  .

 α

a)

1β
1 α

b)

1

φ

Figure 3.9: The two cases for a path in B̂F
0
2(2m + 2) nCBFS2(2m + 2), for any

m > 1

�

If m is an odd number then CBFS2(2m + 2) = f �x� x : � 2 D2i ; � 2
D2(m� i ) ; 0 � i � m+1

2 gnfx� 0xx� 0x : � 0; � 0 2 Dm� 1g, that is the set of paths
consisting of the following consecutive sub-paths: a 2i -length Dyck path, a
rise step, a 2(m� i )-length Dych path, 0 � i � m+1

2 , a fall step, and excluding
those consisting of the following consecutive sub-paths: a rise step, a (m� 1)-
length Dyck path, a fall step followed by a rise step, a (m � 1)-length Dyck
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CHAPTER 3. CROSS-BIFIX-FREE SETS

path, a fall step (see Figure3.10). In other words, the paths which result
from the concatenation of two elevated Dyck paths of the same length must
be excluded.

In particular, if � 0 = � 0 then the excluded paths are not bi�x-free, oth-
erwise if � 0 6= � 0 then the excluded paths match with the paths f �x� x :
� 2 Dm+1 ; � 2 Dm� 1g in CBFS2(2m + 2). Note that CBFS2(2m + 2) is a

subset ofB̂F
0
2(2m + 2), for any odd number m � 1.

=

CBFS (2m+2) =

m−1
’’ Dβ,α

,  

,  

’’ β α

m+1
2

i0,  2(m−i)β2iD

β
 α α D ≤ ≤

2

Figure 3.10: A representation of CBFS2(2m + 2), for any odd number m � 1

Of course jCBFS2(2m + 2) j = (
P m +1

2
i =0 Ci Cm� i ) � (Cm � 1

2
)2, Cm is the

mth Catalan number, for any odd number m � 1. Figure 3.11shows the set
CBFS2(8), with jCBFS2(8)j = ( C3 + C1C2 + C2C1) � (C1)2 = 8.

1 1 0 0 1 1 0 0

2
CBFS  (8) =

1 1 1 1 0 0 0 0

,

1 1 1 0 1 0 0 0

,

1 1 0 1 1 0 0 0

,

1 1 1 0 0 1 0 0

,

1 1 0 1 0 1 0 0

1 0 1 1 1 0 0 0

,

1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0

,

1 0 1 0 1 1 0 0

Figure 3.11: A graphical representation of the setCBFS2(8) giving evidence to
the elements corresponding toC3, C1C2 and C2C1 respectively

Proposition 5 CBFS2(2m + 2) is a cross-bi�x-free set on BF 2(2m + 2) ,
for any odd numberm � 1.

Proof. The proof consists of two distinguished steps. The �rst one proves
that each  2 CBFS2(2m + 2) is bi�x-free and the second one proves that
CBFS2(2m + 2) is a cross-bi�x-free set. Each  2 CBFS2(2m + 2) can be
written as  = vwu, being v; u any necessarily non-empty word whilew can
be an empty word also. Referring to Figure3.10, let m � 1 be �xed, we have
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3.3. ON THE NON-EXPANDABILITY OFCBFS2(N )

to take into consideration three di�erent cases: in the �rst one i = 0, in the
second one 0< i < m+1

2 and in the last one i = m+1
2 .

If i = 0 then  2 f x� x : � 2 D2m g and the proof that  is bi�x-free is equal
to the corresponding case of Proposition3.
If 0 < i < m+1

2 then  2 f �x� x : � 2 D2i ; � 2 D2(m� i ) ; 0 < i < m+1
2 g and

the proof that  is bi�x-free is equal to the case 0< i � m
2 of Proposition 3.

If i = m+1
2 then  2 f �x� x : � 2 Dm+1 ; � 2 Dm� 1gnfx� 0xx� 0x : � 0; � 0 2

Dm� 1g. For each pre�x v of  we have jvj1 � j vj0 and for each su�x u of
 we have juj1 � j uj0. If jvj1 > jvj0 then v 6= u, 8v; u 2  and therefore
 is bi�x-free. If jvj1 = jvj0 then the path v is a 2k-length Dyck path, for
eachk : 1 � k � m+1

2 . If 1 � k � m� 1
2 the proof that  is bi�x-free is equal

to the case 0< i � m
2 of Proposition 3. Therefore, we have to solve only

the case fori = m+1
2 and k = m+1

2 . Since  =2 f x� 0xx� 0x : � 0; � 0 2 Dm� 1g,
necessarily� = v = v0v00, where v0 and v00are necessary non-empty Dyck
paths. Consequentlyv does not match with any su�x u of x� x and so is
bi�x-free.

The proof that, for each  ;  0 2 CBFS2(2m + 2) then  and  0 are
cross-bi�x-free, is quite analogous to the one just illustrated, being = vwu
and  0 = v0w0u0 and comparing the pre�x v of  and the su�x u0 of  0. �

Proposition 6 CBFS2(2m + 2) is a non-expandable cross-bi�x-free set on
BF 2(2m + 2) , for any odd numberm � 1.

Proof. It is su�cient to prove that the set CBFS2(2m + 2) is a non-
expandable cross-bi�x-free set onB̂F 2(2m+2), as each 2 CBFS2(2m+2)
and ' 2 �BF 2(2m + 2) match on the last letter of  and the �rst one of '
at least.

Let m � 1 be �xed, we have to take into consideration three di�erent
cases: in the �rst one we prove that CBFS2(2m + 2) is a non-expandable

cross-bi�x-free set on B̂F
h
2(2m + 2), h > 0, in the second one we prove that

CBFS2(2m + 2) is a non-expandable cross-bi�x-free set onB̂F
h
2(2m + 2),

h < 0, and in the last one we prove thatCBFS2(2m+2) is a non-expandable

cross-bi�x-free set on B̂F
0
2(2m + 2).

Both for h > 0 and h < 0 the proof that CBFS2(2m + 2) is a non-

expandable cross-bi�x-free set onB̂F
h
2(2m+2) is equal to the corresponding

cases proved in Proposition4.
For h = 0, a path  in B̂F

0
2(2m + 2) nCBFS2(2m + 2) either never falls

below the x-axis or crosses thex-axis.
In the �rst case, either  2 f x� 0xx� 0x : � 0; � 0 2 Dm� 1g or  = � 1x� 1x,
where the path � 1 is a necessarily non-empty 2k-length Dyck path and � 1

is a 2(m � k)-length Dyck path, with m+1
2 + 1 � k � m, see Figure3.9 a). If

 2 f x� 0xx� 0x : � 0; � 0 2 Dm� 1g then exist paths in CBFS2(2m + 2) having
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a su�x which matches with a pre�x of  . The path �x� 0x in CBFS2(2m+2),
where � is a necessarily no elevated (m +1)-length Dyck path, has the su�x
x� 0x which matches with the pre�x x� 0x of  . If  = � 1x� 1x, the path
 = x� 1xx� x in CBFS2(2m + 2) has the pre�x x� 1x 2 D2i , i = m � k + 1,
which matches with the su�x of  .

If a path  in B̂F
0
2(2m + 2) nCBFS2(2m + 2) crosses thex-axis then it

can be written as  = � 1� where � 1 is a necessarily non-empty 2k-length
Dyck path, 1 � k � m, and � is a necessarily non-empty Grand-Dyck path
beginning with a fall step, see Figure3.9 b). Therefore, we can �nd paths in
CBFS2(2m + 2) having a su�x which matches with a pre�x of  . The path
 = x�� 1x in CBFS2(2m + 2), being � a Dyck path of appropriate length,
has the su�x � 1x which matches with the pre�x � 1x of  . �

The presented constructive method gives setsCBFS2(n) of cross-bi�x-
free binary words, of �xed length n, having cardinality 1; 1; 2; 3; 5; 8; 14; 23; 42;
72; 132; 227; 429 for n = 3 ; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15, respectively.
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4
Set of patterns avoidance

This chapter generalizes the study of Chapter2. We are interested in
studying the subclass F [P ] of F of binary words excluding the patterns
pl = pl;0pl;1 : : : pl;h l � 1 2 f 0; 1gh l , where pl;k is the k-th letter of pl , that is
the words ! in F [P ] that do not admit a sequence of consecutive indices
j; j + 1 ; : : : ; j + hl � 1 such that ! j ! j +1 : : : ! j + h l � 1 = pl;0pl;1 : : : pl;h l � 1, for
any l such that 1 � l � m. In order to do that the concept of cross-bi�x-free
set tackled in Chapter 3 is needed.

4.1 A generating algorithm forF [Pj ]

In this section we de�ne an algorithm for generating and enumerating
the paths in the class F [P j ] where Pj = f p1(j 1); p2(j 2); : : : ; pm (j m )g is a
cross-bi�x-free set of patterns (see Chapter3), none include in any other,
such that eachpl (j l ) = pl begins with a rise step andjpl j1 = jpl j0+1 = j l +1,
1 � l � m.

Let us observe that, since the patternspl are cross-bi�x-free and begins
with a rise step, they necessarily end with a fall step. Moreover, we remark
that it is not required to the patterns pl to have all the same length.

4.1.1 A construction for the class F [P j ]

The succession rule (2.10) given in Chapter 2 can be extended in order
to obtain the generating algorithm for the class F [P j ]. The classF [P j ] can
be described by the following succession rule:

(4.1)

8
>>>>>>>>><

>>>>>>>>>:

(0)

(k) 1 (k + 1) � � � (1)(02)(01)

(k)
j 1+1
 (k + 1) � � � (1)(02)(01)

(k)
j 2+1
 (k + 1) � � � (1)(02)(01)

...

(k)
j m +1
 (k + 1) � � � (1)(02)(01)
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where the subscripts of labels (0) are simply used in order to distinguish the
two labels one from each other, since they are obtained in two di�erent ways
in the generating process. Note that the labels (01) and (02) have the same
set of successors regardless their subscripts.
The rule (4.1) can be represented as a tree having its root labelled (0) and
where each node with label (k) at a given level n has k + 3 sons at level
n + 1 labelled (k + 1) ; � � � ; (1); (02); (01) respectively, and k + 3 sons at level
n + j l +1, 1 � l � m, with labels (k + 1) ; � � � ; (1); (02); (01) respectively. The
generating algorithm associates a lattice path inF [P j ] with a sequence of
labels obtained by means of the succession rule (4.1). This gives a construc-
tion for the set F [P j ] according to the number of rise steps or equivalently
the number of ones.

The axiom (0) is associated to the empty path" .
A path ! 2 F , with n rise steps and such that its endpoint has ordinatek,
generatesk + 3 paths with n + 1 rise steps, according to the �rst production
of (4.1) having k + 1 ; : : : ; 1; 0; 0 as endpoint ordinates, respectively.

In the similar way described in Section2.2.1, the �rst k + 2 paths are
obtained by adding to ! a sequence of steps consisting of one rise step
followed by k + 1 � h, 0 � h � k + 1, fall steps (see Figure2.1 in Section
2.2.1). Each path so obtained has the property that its rightmost su�x
beginning from the x-axis, either remains strictly above the x-axis itself or
ends on thex-axis by a fall step. Note that in this way the paths ending on
the x-axis and having a rise step as last step are never obtained. These paths
have the label (01) of the �rst production in ( 4.1) and the way to obtain
them will be described later in this section.

Let us denote by L l = ( xL l ; yL l ) and Rl = ( xR l ; yR l ) the initial and
last point of a pattern pl , respectively, (see Figure4.1). We de�ne a marked
forbidden pattern pl as a pattern pl = x� l x 2 P , where � l 2 F and j� l j1 =
j� l j0 + 1, whose steps cannot be split, that is they must always be contained
all together in that de�ned sequence. We say that a point is strictly contained
in a given marked forbidden pattern pl if it is in pl and it is di�erent from
both L l and Rl .

We denote a marked forbidden patternpl by drawing its minimal bound-
ing rectangleB l . A rectangle B l is like a black box, in the sense that it masks
the included pattern pl . A cut operation, i.e the procedure which splits a
given path into two subpaths, is not possible within a marked forbidden
pattern pl . After a cut operation, it is not allowed to switch any rise step
with a fall one, and viceversa, inside a marked forbidden pattern, but it can
be translated.

A path ! 2 F , with n rise steps and such that its endpoint has ordinate
k, generatesk+3 paths, with n+ j l +1 rise steps, according to the production

(k)
j l +1
 (k + 1) � � � (1)(02)(01) of (4.1), 1 � l � m, having k + 1 ; : : : ; 1; 0; 0

as endpoint ordinates, respectively. The �rst k + 2 labels are obtained by
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B

l

l

l
RL

Figure 4.1: A marked forbidden pattern

adding to ! a sequence of steps consisting of the marked forbidden pattern
pl followed by k + 1 � h, 0 � h � k + 1, fall steps (see Figure4.2). Each path
so obtained has the property that its rightmost su�x beginning from the
x-axis, except the points in the rectangleB l , either remains strictly above
the x-axis itself or ends on thex-axis by a fall step. Let us note that, even
if the path in the rectangle B l intersects the x-axis, the initial point of the
marked forbidden pattern, that is the point L l , is always at ordinate h � 0.

At this point the label (0 1) due to the productions of (4.1) is associated
to the paths which either do not contain marked forbidden patterns in its
rightmost su�x and end on the x-axis by a rise step or having the initial
point L l in the rightmost marked forbidden pattern at ordinate h < 0.

)

l lB Bl lB

1+l

( k

j

(1)

k k k

k k) ( +1) ( )

+1
1

2(0  

B

Figure 4.2: The mapping associated to (k)
j l +1
 (k + 1) : : : (1)(02) of (4.1)

In order to obtain the path labelled by (01) according to the �rst produc-
tion of ( 4.1), we consider the path! 0 obtained from ! by adding a sequence
of steps consisting of one rise step followed byk fall steps. In order to obtain
the path labelled by (01) according to every one of the other productions
of (4.1), we consider the paths! 0 obtained from ! by adding a sequence of
steps consisting of the marked forbidden patternpl followed by k fall steps.
By applying the previous actions, a path ! 0 can be written as ! 0 = v' 0,
where ' 0 is the rightmost su�x in ! 0 beginning from the x-axis and strictly
remaining above thex-axis (see Figure4.3). Clearly, in order to determine
the su�x ' 0 of ! 0 we ignore the possible points on or below thex-axis which
are within the black boxes.

In the similar way described in Section 2.2.1, if the su�x ' 0 does not
contain any marked forbidden pattern, then the desired label (01) is asso-
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ϕ

1 1

ϕ

Figure 4.3: A graphical representation of the su�x ' 0 in ! 0

ciated with the path v(' 0)cx, where (' 0)c is the path obtained from ' 0 by
switching rise and fall steps (see Figure2.3 in Section 2.2.1).

If the su�x ' 0 contains marked forbidden patterns, let z be the leftmost
point in ' 0 having highest ordinate and not strictly contained in a marked
forbidden pattern. The desired label (01) is associated to the path obtained
by concatenating to v a fall step x and then the path in ' 0 running from z
to the endpoint of the path and the path running from the initial point in
' 0 to z. (see Figure2.5 in Section 2.2.1).

This last mapping can be inverted as follows. Letd be the rightmost
fall step in a path ! � labelled (01) such that it begins from the x-axis and
each point L l of the marked forbidden patterns, on its right, has ordinate
less than 0. Let ! � = vd' � and P be the rightmost point in ' � with lowest
ordinate. The inverted lattice path of ! � is given by v�� , where � is the
path in ' � running from P to the endpoint of the path and � is the path
running from the initial point in ' � to P (see Figure2.6 in Section 2.2.1).

Figure 4.4 shows the cut and paste actions related to the inverted map-
ping with the patterns p1 = x2xx x and p2 = x4x2xx2 and Figure 4.5 shows
the complete mapping de�ned by the succession rule (4.1) with the cross-
bi�x-free set Pj = f p1; p2g.

ϕ
2 1B

1B

B1

2B

1B

P

ϕ

d

B

Figure 4.4: The inverted mapping related to the label (01) in case of marked
forbidden patterns in ' 0
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)

(2)

(1)

(02 )

(3)

(2)

(01 )

(1)

)2(0

(01 )

(3)

1

2

(2)

(1)

(2)

(3)

(0 )

(0

Figure 4.5: The set of lattice paths obtained from a given (k), by means of the
succession rule (4.1)

4.1.2 Proving the construction

The above described construction generates 2C copies of each path hav-
ing C forbidden patterns such that 2C� 1 instances are coded by a sequence
of labels ending by a marked label, say (k), and contain an odd number of
marked forbidden patterns, and 2C� 1 instances are coded by a sequence of
labels ending by a non-marked label, say (k), and contain an even number
of marked forbidden patterns. This is due to the fact that when a path is
obtained according to the �rst production of ( 4.1) then no marked forbid-
den pattern is added. Moreover, when a path is obtained according to the
other productions of (4.1) exactly one marked forbidden pattern is added.
In any case, the actions performed to obtain the label (01) do not change
the number of marked forbidden patterns in the path.
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Theorem 4 Let Pj = f p1(j 1); : : : ; pm (j m )g be a cross-bi�x-free set of for-
bidden patterns, none include in any other, such that eachpl (j l ) = pl ,
1 � l � m, starts with a rise step andjpl j1 = jpl j0 + 1 = j l + 1 , 1 � l � m.
The generating tree of the paths inF [P j ] according to the number of rise
steps, is isomorphic to the tree having its root labelled by(0) and recursively
de�ned by the succession rule(4:1).

Proof. In order to prove the theorem we have to show that the algorithm
described in the previous pages is a construction for the setF [P j ] according
to the number of rise steps. This means that all the paths inF with n rise
steps are obtained once. Moreover, for each obtained path! in F nF [P j ] with
n rise steps,C forbidden patterns, and (k) as last label of the associated
code, a path ! in F nF [P j ] with n rise steps,C forbidden patterns and (k)
as last label of the associated code is also generated having the same form
as ! but such that the last forbidden pattern is marked if it is not in ! and
vice-versa.

The �rst assertion is a consequence of the construction according to the
�rst production of ( 4.1).

In order to prove the second assertion we have to distinguish two cases
depending on whether the last forbidden patternp` is marked or not.

Let yL ` and yR ` be the ordinate of the initial point and ordinate the last
point of p` , respectively, andh` be the largest ordinate in p` .

First case : the last forbidden pattern p` = x� `x in ! is marked. In
the following we represent the marked forbidden patternp` by its minimal
bounding rectangleB ` .

We consider the following subcases:

yL ` � 0: The path ! in F nF [P j ] can be written as ! = � p` � , where � 2 F ,
� 2 F [P j ] (see Figure4.6).

B

µ ν

Figure 4.6: A representation of the path ! in the caseyL ` � 0

The path ! which kills ! is obtained by adding on� the path x� `x� by
applying consecutive and appropriate mappings of the �rst production
of (4.1).

yL ` < 0: In this case we distinguish the following two subcases:h` � 0 and
h` < 0
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h` � 0: The path ! in F nF [P j ] can be written as ! = � x p` � , where
�;  2 F , � 2 F [P j ] (see Figure4.7).

B

γ

µ ν

Figure 4.7: A representation of the path ! in the caseyL ` < 0 with h` � 0

In this case exists at least one point intersecting thex-axis which
is contained in p` .

Let & be the pre�x of the forbidden (but no marked) pattern p`

running from point L ` to the leftmost point in which p` meets
with the x-axis. The path ! which kills ! is obtained by adding
to � x& the path &0� by applying consecutive and appropriate
mappings of the �rst production of ( 4.1), where &0 is the su�x of
p` running from the endpoint of &to the endpoint of p` .

h` < 0: The path ! in F nF [P ] can be written as ! = � x p` �x� , where
�;  2 F and �; � 2 F [P ] (see Figure4.8).

B

ηγ

µ
ν

Figure 4.8: A representation of the path ! in the caseyL ` < 0 with h` < 0

We observe that the path  can contain marked forbidden pat-
terns, with endpoints at ordinate less than 0. If the path  con-
tains no marked forbidden patterns, then it remains strictly under
the x-axis, otherwise each marked forbidden pattern in inter-
sects thex-axis when its largest ordinate is greater than 0. More-
over, the path � remains strictly under the x-axis. We distinguish
two subcases.

In the �rst one the path  contains no marked forbidden patterns
and remains strictly under the x-axis. The path ! which kills ! is
obtained by performing on � the following actions: add the path
xx� `x�x by applying consecutive and appropriate mappings of
the �rst production of ( 4.1), apply the actions giving the label
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(01) in case of no marked forbidden patterns. The path� in ! is
obtained as in ! .
In the latter subcase the path  contains at least a marked for-
bidden pattern. We consider the rightmost point P of the path
x p` �x with lowest ordinate. The path ! which kills ! is ob-
tained by performing on � the following actions: add the path
in x� `x�x running from P to its endpoint by applying consec-
utive and appropriate mappings of the productions of (4.1), add
the path in x� `x�x running from its initial point to P by ap-
plying consecutive and appropriate mappings of the productions
of (4.1), apply the cut and paste actions giving the label (01) in
case of marked forbidden patterns. Obviously, the last forbidden
pattern in the path must be generated by applying consecutive
and appropriate mappings of the �rst production of ( 4.1). The
path � in ! is obtained as in ! .

Second case: the last forbidden pattern p` in ! is not a marked forbid-
den pattern. We consider the subcases:yL ` � 0 and yL ` < 0.

yL ` � 0: The path ! in F nF [P j ] can be written as ! = � p` � , where � 2 F ,
� 2 F [P j ] (see Figure4.9).

µ

p

ν

Figure 4.9: A representation of the path ! in the caseyL ` � 0

The path ! which kills ! is obtained by adding on � the path p` � by

applying an appropriate mapping of (k)
j ` +1
 (k + 1) � � � (1)(02), that is

the production generating the last marked forbidden pattern p` in ! ,
and consecutive and appropriate mappings of the �rst production of
(4.1).

yL ` < 0: The path ! in F nF [P j ] can be written as ! = � x p` �x� , where �;  2
F and �; � 2 F [P j ] (see Figure4.10).

We consider the rightmost point P of the path x p` �x with lowest
ordinate. The path ! which kills ! is obtained by performing on �
the following actions: add the path in  p` �x running from P to its
endpoint by applying consecutive and appropriate mappings of the
productions of (4.1), add the path in  p` �x running from its initial
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p

η
γ

µ ν

Figure 4.10: A representation of the path ! in the caseyL ` < 0

point to P by applying consecutive and appropriate mappings of the
productions of (4.1), apply the cut and paste actions giving the label
(01) in case of marked forbidden patterns. Obviously, the last marked
forbidden pattern p` in ! is generated by an appropriate mapping of

the production (k)
j ` +1
 (k + 1) � � � (1)(02). The path � in ! is obtained

as in ! .

Note that, if the last point R` of p` in ! is on the x-axis then the path
! in F nF [P j ] can be written as ! = � x p` � and operations above
described are applied on the path p` .

We observe that for each path! in F nF [P j ] with n rise steps,C forbidden
patterns and last label (k), there exists one and only one path! in F nF [P j ]

with n rise steps,C forbidden patterns and last label (k) having the same
form as ! but such that the last forbidden pattern is marked if it is not in
! and vice-versa.

This assertion is an immediate consequence of the constructions in the
proof, since the described actions are univocally determined. Therefore, it
is not possible to obtain a path ! which kills a given path ! applying two
distinct procedures. �

4.1.3 Enumeration of F [P j ]

In order to obtain the enumeration of the classF [P j ] according to the
number of rise steps, we use a standard method, called ECO-method, for the
enumeration of combinatorial objects which admit recursive descriptions in
terms of generating trees, see [8, 32].

Let N be the set of paths generated by the algorithm described in Sec-
tion 4.1 whose instances are coded by a sequence of labels in the generating
tree ending by a non-marked one andM be the set of instances coded by a
sequence of labels ending by a marked one. ThenF [P j ] = N nM .

The paths in N with n rise steps are obtained from the paths inN with
n � 1 rise steps by means of the �rst production of (4.1) and from those in
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M with n � j l � 1, 1 � l � m, rise steps by means of the other productions
of (4.1).

The paths in M with n rise steps are obtained from the paths inM with
n � 1 rise steps by means of the �rst production of (4.1) and from those in
N with n � j l � 1, 1 � l � m, rise steps by means of the other productions
of (4.1).

So, given a path! 2 F with n(! ) rise steps and ending point at ordinate
h(! ), from the succession rule (4.1) we have:

N (x; y) = 1 +
X

! 2 N

0

@
h(! )+1X

i =0

xn(! )+1 yi + xn(! )+1 y0

1

A +

+
X

! 2 M

0

@
h(! )+1X

i =0

xn(! )+ j 1+1 yi + xn(! )+ j 1+1 y0

1

A +

...

+
X

! 2 M

0

@
h(! )+1X

i =0

xn(! )+ j m +1 yi + xn(! )+ j m +1 y0

1

A

M (x; y) =
X

! 2 M

0

@
h(! )+1X

i =0

xn(! )+1 yi + xn(! )+1 y0

1

A +

+
X

! 2 N

0

@
h(! )+1X

i =0

xn(! )+ j 1+1 yi + xn(! )+ j 1+1 y0

1

A +

...

+
X

! 2 N

0

@
h(! )+1X

i =0

xn(! )+ j m +1 yi + xn(! )+ j m +1 y0

1

A

Since
P

! 2 N

� P h(! )+1
i =0 xn(! )+1 yi + xn(! )+1 y0

�
=

=
P

! 2 N xn(! )+1
�

yh ( ! )+2 � 1
y� 1 + 1

�
= xy 2

y� 1N (x; y) � x
y� 1N (x; 1) + x N (x; 1),

going on in the same way with the other terms we obtain:
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N (x; y) = 1 +
xy2

y � 1
N (x; y) �

x
y � 1

N (x; 1) + x N (x; 1) +

+
x j 1+1 y2

y � 1
M (x; y) �

x j 1+1

y � 1
M (x; 1) + x j 1+1 M (x; 1) +

...

+
x j m +1 y2

y � 1
M (x; y) �

x j m +1

y � 1
M (x; 1) + x j m +1 M (x; 1)

M (x; y) =
xy2

y � 1
M (x; y) �

x
y � 1

M (x; 1) + x N (x; 1) +

+
x j 1+1 y2

y � 1
N (x; y) �

x j 1+1

y � 1
N (x; 1) + x j 1+1 N (x; 1) +

...

+
x j m +1 y2

y � 1
N (x; y) �

x j m +1

y � 1
N (x; 1) + x j m +1 N (x; 1)

SinceFj 1 ;:::;j m (x; y) = N (x; y) � M (x; y) then

Fj 1 ;:::;j m (x; y) = 1 +
xy2

y � 1
Fj 1 ;:::;j m (x; y) �

x
y � 1

Fj 1 ;:::;j m (x; 1) +

+ x F j 1 ;:::;j m (x; 1) �

� (x j 1+1 + : : : + x j m +1 )
y2

y � 1
Fj 1 ;:::;j m (x; y) +

+( x j 1+1 + : : : + x j m +1 )
1

y � 1
Fj 1 ;:::;j m (x; 1) �

� (x j 1+1 + : : : + x j m +1 )Fj 1 ;:::;j m (x; 1)

and

(y � 1 � x(1 � x j 1 � : : : � x j m )y2)Fj 1 ;:::;j m (x; y) =

= y � 1 � xF j 1 ;:::;j m (x; 1) + x(y � 1) Fj 1 ;:::;j m (x; 1) +

+( x j 1+1 + : : : + x j m +1 )Fj 1 ;:::;j m (x; 1) �

� (x j 1+1 + : : : + x j m +1 )(y � 1)Fj 1 ;:::;j m (x; 1)

Going on and using the kernel method [8] we obtain the generating func-
tion Fj 1 ;:::;j m (x) for the words ! 2 F [P j ] according to the number of ones:

Fj 1 ;:::;j m (x) = Fj 1 ;:::;j m (x; 1) =
1 � y0(x)

x(y0(x) � 2)(1 � x j 1 � : : : � x j m )
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where

y0(x) =
1 �

p
1 � 4x(1 � x j 1 � : : : � x j m )

2x(1 � x j 1 � : : : � x j m )
:

Let us remark that the generating function Fj 1 ;:::;j m (x) depends only on the
number of ones in each forbidden pattern, so it enumerates all the sets of
binary words in F avoiding cross-bi�x-free forbidden patterns with j 1; : : : ; j m

ones independently from their shapes.

Example 4 For any set Pj = f p1(3); p2(5)g, the �rst numbers of the se-
quence enumerating the binary words inF [P j ], according to the number of
ones, are:1; 3; 10; 35; 123; 442; 1608; 5911; 21905; : : :

being

F3;5(x) =
1 � 1�

p
1� 4x+4 x4+4 x6

2x(1� x3 � x5 )

x
�

1�
p

1� 4x+4 x4+4 x6

2x(1� x3 � x5 ) � 2
�

(1 � x3 � x5)
=

=
2x(1 � x3 � x5) � (1 �

p
1 � 4x + 4x4 + 4x6)

x(1 � x3 � x5)(1 �
p

1 � 4x + 4x4 + 4x6 � 4x(1 � x3 � x5))

the associated generating function.

4.2 A generating algorithm forF [Pj;j ]

In this section, we study the construction and the enumeration of the
class F [P j;j ] where Pj;j = f p1(j 1; j 1); p2(j 2; j 2); : : : ; pm (j m ; j m )g is a cross-
bi�x-free set of patterns (see Chapter3), none include in any other, such that
eachpl (j l ; j l ) = pl begins with a rise step andjpl j1 = jpl j0 = j l , 1 � l � m,
which is a slight modi�cation of study in Section 4.1.

4.2.1 A construction for the class F [P j;j ]

In this section, we de�ne an algorithm to construct the set F [P j;j ] where
Pj;j = f p1(j 1; j 1); p2(j 2; j 2); : : : ; pm (j m ; j m )g is a cross-bi�x-free set of pat-
terns, none include in any other, such that eachpl (j l ; j l ) = pl begins with
a rise step andjpl j1 = jpl j0 = j l , 1 � l � m. Let us observe that, since the
patterns pl are cross-bi�x-free and begins with a rise step, they necessarily
end with a fall step. Moreover, we remark that it is not required to the
patterns pl to have all the same length.

The growth of the set F [P j;j ], according to the number of rise steps or
equivalently the number of ones, can be described by the following jumping
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and marked succession rule:

(4.2)

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

(0)

(k)
1

 (k + 1)( k) � � � (1)(02)(01) k � 0

(0)
j 1 (02)

(k)
j 1 (k)(k � 1) � � � (1)(02)(01) k � 1

(0)
j 2 (02)

(k)
j 2 (k)(k � 1) � � � (1)(02)(01) k � 1

...

(0)
j m (02)

(k)
j m (k)(k � 1) � � � (1)(02)(01) k � 1

This rule can be represented as a tree having its root labelled (0) and
where each node with label (k) at level n gives k + 3 sons at level n + 1
labelled (k + 1) ; � � � ; (1); (02); (01) and k + 2 sons at level n + j l , 1 � l � m,
with labels (k); � � � ; (1); (02); (01), if k � 1, or only one son with label (02)
at level n + j l , 1 � l � m, if k = 0. The generating algorithm associates
a lattice path in F [P j;j ] to a sequence of labels obtained by means of the
succession rule (4.2). This give a construction for the set F [P j;j ] according
to the number of rise steps or equivalently the number of ones.

The axiom (0) is associated to the empty path" .
A path ! 2 F , with n rise steps and such that its endpoint has ordinatek,
generatesk + 3 paths with n + 1 rise steps, according to the �rst production
of (4.2) having k + 1 ; : : : ; 1; 0; 0 as endpoint ordinates, respectively.

In the similar way described in Section2.2.1, the �rst k + 2 paths are
obtained by adding to ! a sequence of steps consisting of one rise step
followed by k + 1 � h, 0 � h � k + 1, fall steps (see Figure2.1 in Section
2.2.1). Each path so obtained has the property that its rightmost su�x
beginning from the x-axis, either remains strictly above the x-axis itself or
ends on thex-axis by a fall step. Note that in this way the paths ending
on the x-axis and having a rise step as last step are never obtained. These
paths have the label (01) of the �rst production in ( 4.2).

Let us denote by L l = ( xL l ; yL l ) and Rl = ( xR l ; yR l ) the initial and last
point of a pattern pl , respectively, (see Figure4.11). We de�ne a marked
forbidden pattern pl as a pattern pl = x� l x 2 P , where � l 2 F and j� l j1 =
j� l j0, whose steps cannot be split, that is they must always be contained all
together in that de�ned sequence. We say that a point is strictly contained
in a given marked forbidden pattern pl if it is in pl and it is di�erent from
both L l and Rl .

We denote a marked forbidden patternpl by drawing its minimal bound-
ing rectangleB l . A rectangle B l is like a black box, in the sense that it masks
the included pattern pl . A cut operation, i.e the procedure which splits a

81



CHAPTER 4. SET OF PATTERNS AVOIDANCE

given path into two subpaths, is not possible within a marked forbidden
pattern pl . After a cut operation, it is not allowed to switch any rise step
with a fall one, and viceversa, inside a marked forbidden pattern, but it can
be translated.

B

lL lR

l

Figure 4.11: A marked forbidden pattern

A path ! 2 F , with n rise steps and such that its endpoint has ordinate 0,
provides one path, with n + j l rise steps, 1 � l � m, according to the

(0)
j l (02) production of ( 4.2). The obtained path has 0 as endpoint ordinate

and it is obtained by adding to ! a sequence of steps consisting of the marked
forbidden pattern pl in bounding rectangle B l , see Figure4.12.

jl

lB

(0) (0 )2

Figure 4.12: The mapping associated to (0)
j l (02) of (4.2)

A path ! 2 F , with n rise steps and such that its endpoint has ordinate
k � 1, provides k + 2 paths, with n + j l rise steps, 1� l � m, according to

the (k)
j l (k)(k � 1) � � � (1)(02)(01) production of ( 4.2), having k; : : : ; 1; 0; 0

as endpoint ordinate, respectively. The �rst k + 1 labels are obtained by
adding to ! a sequence of steps consisting of the marked forbidden pattern
pl followed by k � h, 0 � h � k, fall steps, see Figure4.13.

(

BllBlBlB

)k(

l

−1)(k

k −1k

)(0  2

1

)k

k

(1)

j

Figure 4.13: The mapping associated to (k)
j l (k) : : : (1)(02) of (4.2)

At this point the label (0 1) due to the productions of (4.2) is associated
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with paths which either do not contain marked forbidden patterns in its
rightmost su�x and end on the x-axis by a rise step or having the initial
point L l in the rightmost marked forbidden pattern at ordinate less than 0.

In order to obtain the path labelled by (01) according to the �rst produc-
tion of ( 4.2), we consider the path! 0 obtained from ! by adding a sequence
of steps consisting of one rise step followed byk fall steps. In order to obtain
the path labelled by (01) according to every one of the other productions
of (4.2), we consider the paths! 0 obtained from ! by adding a sequence
of steps consisting of the marked forbidden patternpl followed by k � 1
fall steps. By applying the previous actions, a path ! 0 can be written as
! 0 = v' 0, where ' 0 is the rightmost su�x in ! 0 beginning from the x-axis
and strictly remaining above the x-axis.

As in Section 2.2.1, we distinguish two cases: in the �rst one' 0 does not
contain any marked point and in the second one' 0 contains at least one
marked point.

If the su�x ' 0 does not contain any marked point, then the desired label
(01) is associated to the pathv(' 0)cx, where (' 0)c is the path obtained from
' 0 by switching rise and fall steps (see Figure2.3 is Section2.2.1).

If the su�x ' 0 contains marked points, then the desired label (01) is
associated to the path obtained by applying cut and paste actions described
in Section 2.2.1.

At this point, we have the complete mapping de�ned by the succession
rule (4.2).

4.2.2 Proving the construction

The above construction generates 2C copies of each path havingC for-
bidden patterns such that 2C� 1 instances are coded by a sequence of labels
ending by a marked label, say (k), and contain an odd number of marked
forbidden patterns, and 2C� 1 instances are coded by a sequence of labels end-
ing by a non-marked label, say (k), and contain an even number of marked
forbidden patterns. This is due to the fact that when a path is obtained
according to the �rst production of ( 4.2) then no marked forbidden pattern
is added. Moreover, when a path is obtained according to the other produc-
tions of (4.2) exactly one marked forbidden pattern is added. In any case,
the actions performed to obtain the label (01) do not change the number of
marked forbidden patterns in the path itself.

Theorem 5 Let Pj;j = f p1(j 1; j 1); p2(j 2; j 2); : : : ; pm (j m ; j m )g be a cross-
bi�x-free set of patterns, none include in any other, such that each pattern
pl (j l ; j l ) = pl begins with a rise step andjpl j1 = jpl j0 = j l , 1 � l � m. The
generating tree of the paths inF [P j;j ], according to the number of rise steps,
is isomorphic to the tree having its root labelled(0) and recursively de�ned
by the succession rule(4:2).
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The proof of the Theorem 5 is analogous to the proof of Theorem4 and
it is omitted for brevity.

4.2.3 Enumeration of F [P j;j ]

As in Section 4.1, in order to obtain the enumeration of the classF [P j;j ]

according to the number of rise steps, we use a standard method, called
ECO-method, for the enumeration of combinatorial objects which admit
recursive descriptions in terms of generating trees, see [8, 32].

let Z be the set of paths whose instances are coded by a sequence of
labels in the generating tree ending by a non-marked zero,S be the set of
paths whose instances are coded by a sequence of labels ending by a marked
zero, N be the set of paths whose instances are coded by a sequence of
labels ending by a non-markedk � 1 and M be the set of paths whose
instances are coded by a sequence of labels ending by a markedk � 1. Then
F [P j;j ] = ( Z nS) [ (N nM ).

The succession rule (4.2) can be written as:

(4.3)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(0)

(0)
1

 (1)(02)(01)

(k) 1 (k + 1)( k) � � � (1)(02)(01) k � 1

(0)
j 1 (02)

(k)
j 1 (k)(k � 1) � � � (1)(02)(01) k � 1

...

(0)
j m (02)

(k)
j m (k)(k � 1) � � � (1)(02)(01) k � 1

Let us denote by n(! ) the number of rise steps of a path! 2 F and by
h(! ) the last point's ordinate of ! itself. From the succession rule (4.3) we
have:

Z (x; 1) = 1 + 2 xZ (x; 1) + 2xN (x; 1) + ( x j 1 + � � � + x j m )S(x; 1) +

+2( x j 1 + � � � + x j m )M (x; 1);

S(x; 1) = 2xS(x; 1) + 2xM (x; 1) + ( x j 1 + � � � + x j m )Z (x; 1) +

+2( x j 1 + � � � + x j m )N (x; 1);
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N (x; y) = xyZ (x; 1) +
X

! 2 N

h(! )+1X

i =1

xn(! )+1 yi +
X

! 2 M

h(! )X

i =1

xn(! )+ j 1 yi + � � �

� � � +
X

! 2 M

h(! )X

i =1

xn(! )+ j m yi ;

M (x; y) = xyS(x; 1) +
X

! 2 M

h(! )+1X

i =1

xn(! )+1 yi +
X

! 2 N

h(! )X

i =1

xn(! )+ j 1 yi + � � �

� � � +
X

! 2 N

h(! )X

i =1

xn(! )+ j m yi :

Since
P

! 2 N
P h(! )+1

i =1 xn(! )+1 yi =
P

! 2 N xn(! )+1
�

yh ( ! )+2 � y
y� 1

�
=

= xy 2

y� 1N (x; y) � xy
y� 1N (x; 1) going on in the same way with the other terms,

then we obtain:

N (x; y) = xyZ (x; 1) +
xy2

y � 1
N (x; y) �

xy
y � 1

N (x; 1) +

+
(x j 1 + : : : + x j m )y

y � 1
M (x; y) �

(x j 1 + : : : + x j m )y
y � 1

M (x; 1);

M (x; y) = xyS(x; 1) +
xy2

y � 1
M (x; y) �

xy
y � 1

M (x; 1) +

+
(x j 1 + : : : + x j m )y

y � 1
N (x; y) �

(x j 1 + : : : + x j m )y
y � 1

N (x; 1):

SinceT(x; y) = N (x; y) � M (x; y) then:

T(x; y) = xy(Z (x; 1) � S(x; 1)) +
(xy2 � (x j 1 + : : : + x j m )y)

y � 1
T(x; y) �

�
(xy � (x j 1 + : : : + x j m )y)

y � 1
T(x; 1)

that is
T(x; y)(y � 1 � xy2 + ( x j 1 + : : : + x j m )y) =

= xy(y � 1)(Z (x; 1) � S(x; 1)) � (xy � (x j 1 + : : : + x j m )y)T(x; 1):

Let

y0(x) =
1 + x j 1 + : : : + x j m �

p
(x j 1 + : : : + x j m + 1) 2 � 4x
2x
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be a solution of xy2 � (x j 1 + : : : + x j m + 1) y + 1 = 0. Then we have the
desired equation according to the number of ones, only:

T(x; 1) =
y0(x) � 1

1 � x j 1 � 1 + : : : + x j m � 1 (Z (x; 1) � S(x; 1)):

Since

W(x; 1) = Z (x; 1) � S(x; 1) =
1 + 2x(1 � x j 1 � 1 + : : : + x j m � 1)T(x; 1)

1 � 2x + x j 1 + : : : + x j m
;

then we have:

T(x; 1) =
y0(x) � 1

(1 � x j 1 � 1 � � � � � x j m � 1)(1 + x j 1 + � � � + x j m � 2xy0(x))
;

W (x; 1) =
1

(1 + x j 1 + � � � + x j m � 2xy0(x))
:

Therefore the generating function F jj
j 1 ;:::;j m

(x) = T(x; 1) + W (x; 1) for
the words ! 2 F [P j;j ] according to the number of ones is:

F jj
j 1 ;��� ;j m

(x) =
y0(x) � x j 1 � 1 � � � � � x j m � 1

(1 � x j 1 � 1 � � � � � x j m � 1)(1 + x j 1 + � � � + x j m � 2xy0(x))
:

Let us remark that the generating function F jj
j 1 ;:::;j m

(x) depends only
on the number of ones in each forbidden pattern, so it enumerates all the
sets of binary words in F avoiding cross-bi�x-free forbidden patterns with
j 1; : : : ; j m ones (or zeroes) independently from their shapes.

Example 5 For any set Pj;j = f p1(4; 4); p2(5; 5)g, the �rst numbers of the
sequence enumerating the binary words inF [P j;j ], according to the number
of ones, are:1; 3; 10; 35; 125; 453; 1663; 6166; 23037; � � �

being

F jj
4;5(x) =

1+ x4+ x5 �
p

(x4+ x5+1) 2 � 4x
2x � x3 � x4

(1 � x3 � x4)
p

(x4 + x5 + 1) 2 � 4x

the associated generating function.
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4.3 A generating algorithm forF [Pj;i ]

In this section we focus on the generalization of cross-bi�x-free setP of
forbidden patterns none include in any other, passing fromPj = f p1(j 1);
p2(j 2); : : : ; pm (j m )g such that eachpl (j l ) begins with a rise step and hasj l +1
rise steps andj l down steps, 1� l � m, to Pj;i = f p1(j 1; i 1); p2(j 2; i 2); : : :
: : : ; pm (j m ; i m )g such that each pl (j l ; i l ) begins with a rise step and hasj l

rise steps andi l down steps, with 0< i l < j l for any l, 1 � l � m.
It is possible to adapt the algorithm constructing the classF [P j ] to the

classF [P j;i ].
As in Chapter 2, also in this case the theory of Riordan arrays is not

applicable to, neither the algorithmic approach allows to obtain their gen-
erating functions. Anyway it gives us a way to construct all the objects in
this class.

4.3.1 A construction for the class F [P j;i ]

In this section, we propose an algorithm to construct the setF [P j;i ] where
Pj;i = f p1(j 1; i 1); p2(j 2; i 2); : : : ; pm (j m ; i m )g is a cross-bi�x-free set of pat-
terns, none include in any other, such that eachpl (j l ; i l ) = pl begins with a
rise step andjpl j1 = j l and jpl j0 = i l with 0 < i l < j l for each l, 1 � l � m.

Let us observe that, since the patternspl are cross-bi�x-free and begins
with a rise step, they necessarily end with a fall step. Moreover, remark that
it is not required that the patterns pl have the same length.

The study presented in Section2.4 can be extended in order to obtain
the generating algorithm for the classF [P j;i ].

In particular, the growth of the class, according to the number of rise
steps or equivalently the number of ones, also in this case can be syntheti-
cally expressed by means of a jumping and marked succession rule which is
sensible to the shape of the path inF which is applied to.

Let us denote by L l = ( xL l ; yL l ) and Rl = ( xR l ; yR l ) the initial and last
point of a forbidden pattern pl , respectively (see Figure4.14).

We de�ne a marked forbidden pattern pl as a pattern pl = x%l x 2 P j;i ,
where %l 2 F such that j%l j1 = j l � 1 and j%l j0 = i l � 1, whose steps
cannot be split, that is they must always be contained all together in that
de�ned sequence. We say that a point is strictly contained in a given marked
forbidden pattern pl if it is in pl and it is di�erent from both L l and Rl .

We denote a marked forbidden patternpl by drawing its minimal bound-
ing rectangle B l .

A rectangle B l is like a black box, in the sense that it masks the included
pattern pl . A cut operation, i.e the procedure which splits a given path into
two subpaths, is not possible within a marked forbidden patternpl . After a
cut operation, it is not allowed to switch any rise step with a fall one, and

87



CHAPTER 4. SET OF PATTERNS AVOIDANCE

viceversa, inside a marked forbidden pattern, but it can be translated.

L

lR

Bl

l

Figure 4.14: A marked forbidden pattern

In order to study the enumeration and the construction for the class
F [P ], we have to distinguish two cases depending on the shape of the paths
in F .

De�nition 3 A path ! in F is a �-path if:

� it ends on the x-axis (see Figure4.15.a));

� the ordinate of its endpoint is greater than 0 and its rightmost su�x
' begins from thex-axis by a rise step and strictly remains above the
x-axis itself. The su�x ' can contain marked forbidden patternspl

(see Figure 4.15.b)) or not (see Figure 4.15.c)). If ' contains marked
forbidden patterns pl , then yL l � 0.

De�nition 4 A path ! in F is a �-path if the ordinate of its endpoint is
greater that 0 and its rightmost su�x ' � begins from thex-axis by a fall
step and contains at least one marked forbidden patternpl having ordinates
yL l < 0 and yR l > 0 (see Figure 4.15.d)).

a)

l

l
B

B
l l

B ϕ
ϕ

ϕ

d)c)b)

B

Figure 4.15: Some examples of paths inF
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� -paths in F

For each �-path ! in F having k as the ordinate of its endpoint, we
apply the succession rule (4.4), for each k � 0:

(4.4)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(0)

(k) 1 (k + 1)( k) � � � (2)(1)(0) 2

(k)
j 1 (k + j 1 � i 1) : : : (s1)(s1 � 1)2 : : : (1)s1 (0)s1+1

(k)
j 2 (k + j 2 � i 2) : : : (s2)(s2 � 1)2 : : : (1)s2 (0)s2+1

...

(k)
j m (k + j m � i m ) : : : (sm )(sm � 1)2 : : : (1)sm (0)sm +1

In the productions of (4.4), the parameter sl , with sl � 0 for each l,
1 � l � m, is related to the shape of the �-path ! and the way to �nd sl

will be described later in this section.
We de�ne an algorithm which associates a �-path in F to a sequence of

labels obtained by means of the succession rule (4.4).
The axiom (0) is associated to the empty path" .

A �-path ! 2 F , with n rise steps and such that its endpoint has ordinate
k, provides k + 3 lattice paths, with n + 1 rise steps, according to the �rst
production of (4.4) having k + 1 ; k; : : : ; 1; 0; 0 as endpoint ordinate, respec-
tively.

As in Section 2.2.1, the �rst k + 2 labels are obtained by adding to ! a
sequence of steps consisting of one rise step followed byk + 1 � h fall steps
for each h, 0 � h � k + 1, see Figure2.1 in Section 2.2.1.

Each lattice path so obtained has the property that its rightmost su�x
beginning from the x-axis, either remains strictly above the x-axis itself or
ends on thex-axis by a fall step. Note that in this way, the paths ending on
the x-axis by a rise step are never obtained. These paths are bound to the
�rst label (0) of the �rst production in ( 4.4).

In order to obtain the �rst label (0) according to the �rst production of
(4.4), we consider the path! 0obtained from ! by adding a sequence of steps
consisting of one rise step followed byk fall steps. By applying the previous
actions, a path ! 0can be written as! 0 = v' 0, where' 0 is the rightmost su�x
in ! 0 beginning from the x-axis and strictly remaining above the x-axis.

In the similar way described in Section2.2.1, we distinguish two cases:
in the �rst one ' 0 does not contain any marked point and in the second one
' 0 contains at least one marked point.

If the su�x ' 0 does not contain any marked point, then the desired label
(0) is associated to the pathv(' 0)cx, where (' 0)c is the path obtained from
' 0 by switching rise and fall steps, see Figure2.3 in Section 2.2.1.
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If the su�x ' 0 contains marked points, let z = ( xz; yz) be the leftmost
point in ' 0 having highest ordinate, and not strictly contained in a marked
forbidden pattern.

The desired label (0) is associated to the path obtained by applying
cut and paste actions - described in Section2.2.1 - which consist on the
concatenation of a fall step x with the path in ' 0 running from z to the
endpoint of the path, called � , and the path running from the initial point
in ' 0 to z, called � , see Figure2.5 in Section 2.2.1.

This last mapping can be inverted as in Section2.2.1. In particular, let d
be the rightmost fall step in a path ! � labelled (0) beginning from thex-axis
and such that each marked point, on its right, has ordinate less thanj . Let
us ! � = v' � , where ' � is the rightmost su�x in ! � beginning with d and let
P be the rightmost point in ' � having lowest ordinate. The inverted lattice
path of ! � is given by v�� , where � is the path in ' � running from P to
the endpoint of the path and � is the path ' � running from the endpoint of
d to P, see Figure2.6 in Section 2.2.1.

Let the parameter sl be �xed for each l, 1 � l � m, a �-path ! 2
F , with n rise steps and such that its endpoint has ordinatek, provides
1 + k + j l � i l +

P sl
f l =1 f l lattice paths, with n + j l rise steps, according

to the production ( k)
j l (k + j l � i l ) : : : (sl )(sl � 1)2 : : : (1)sl (0)sl +1 of (4.4).

The �rst 1 + k + j l � i l lattice paths have k + j l � i l ; : : : ; sl ; sl � 1; : : : ; 1; 0
as endpoint ordinate, respectively, and concerning the remaining

P sl
f l =1 f l

lattice paths each f l of them has sl � f l as endpoint ordinate, for eachf l ,
0 � f l � sl .

The �rst 1 + k + j l � i l lattice paths are obtained by adding to ! a
sequence of steps consisting of the marked forbidden patternpl followed by
k + j l � i l � h fall steps, for eachh, 0 � h � k + j l � i l , (see Figure4.16).

Each lattice path so obtained has the property that its rightmost su�x
beginning from the x-axis, either remains strictly above the x-axis itself or
ends on thex-axis by a fall step.

The
P sl

f l =1 f l marked labels according to the production (k)
j l (k + j l � i l ) : : :

: : : (sl )(sl � 1)2 : : : (1)sl (0)sl +1 of (4.4), must give lattice paths having the
rightmost marked forbidden pattern pl with ordinate yL l < 0.

In order to obtain such
P sl

f l =1 f l marked labels, we consider the paths! 00

obtained from ! = v' , where ' is the rightmost su�x in ! beginning from
the x-axis and strictly remaining above the x-axis, by adding a sequence of
steps consisting of the marked forbidden patternpl followed by k + j l � i l � f l

fall steps, for eachf l , 1 � f l � sl . Therefore, we consider the just obtained
paths labelled with (f l ), for each f l , 1 � f l � sl , which are represented in
Figure 4.16. By applying the previous actions, a path ! 00can be written
as ! 00= ! pl xk+ j l � i l � f l = v' pl xk+ j l � i l � f l = v' 00, 1 � f l � sl , where ' 00is
the rightmost su�x in w00beginning from the x-axis and strictly remaining
above thex-axis (see Figure4.17).
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l l
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k + j − i

k + j − i
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l l

l l l l

l
s

Figure 4.16: The mapping associated to (k)
j l (k + j l � i l ) : : : (sl ) : : : (1)(0) of

(4.4)

ϕ

lf

lB
iB

21s yy
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z
s2

1

y

z

s

Figure 4.17: A graphical representation of the path ! 00= ! pl xk+ j l � i l � f l = v' 00,
1 � f l � sl

Let z = ( xz; yz) be the leftmost point in ' 00having highest ordinate and
not strictly contained in a marked forbidden pattern. Let s1 = ( xs1 ; ys1 ) be
the point in ' 00on the left of z, having highest ordinate and not strictly
contained in a marked forbidden pattern. Let s2 = ( xs2 ; ys2 ) be the point in
' on the right of z, having lowest ordinate and not strictly contained in a
marked forbidden pattern.

Then the parameter sl in the production ( k)
j l (k + j l � i l ) : : :

: : : (sl )(sl � 1)2 : : : (1)sl (0)sl +1 of (4.4) is sl = min f yz � ys1 ; ys2 g. When z is
contained in the su�x pl xk+ j l � i l � f l of ! 00, 1 � f l � sl , s2 does not exist and
then s = yz � ys1 .

By setting s = min f yz � ys1 ; ys2 g we assure that, in the reverse of the
cut and past actions, the point which must be taken into consideration is
exactly P (see Figure4.18).
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P

ϕ

c

s2

2 s1

1c
B

Bi

l

lzy − f +1

Figure 4.18: A graphical representation of the path v' � obtained by applying the
cut and paste actions to the path ! 00

Remind that, from the reverse of the cut and paste actions, the pointP
is de�ned as the rightmost point in ' � having lowest ordinate. This means
that two conditions must be veri�ed: the former one establishes that the
ordinate of P must be the lowest in the path ' � and the latter condition
establishes that, if there are two or more points in ' � having the same
lowest ordinate then P is the rightmost one. In order to verify the former
condition, the absolute value of the ordinate of the point s1 in ' � , that is
c1 = yz � f l + 1 � ys1 , must be greater than 0, that is f l < y z � ys1 + 1.
Moreover in order to verify the latter condition, the ordinate of the point
s2, that is c2 = yz � ys2 + 1, must be less than or equal toyz � f l + 1, that
is f l � ys2 . So sl = min f yz � ys1 ; ys2 g assures that the two conditions are
veri�ed as sl is the upper value which can getf l .

By performing the cut and paste actions on each! 00, we obtain sl paths
labelled (f l � 1) for each f l , 1 � f l � sl . By adding gl fall steps for each
gl , 0 < g l � f l � 1, to each of such paths (see Figure4.19), we obtain

the complete mapping associated to the production (k)
j l (k + j l � i l ) : : :

: : : (sl )(sl � 1)2 : : : (1)sl (0)sl +1 of (4.4).

Note that, we apply the cut and paste actions to the paths! 00exclusively.
Indeed, by performing the cut and paste actions to the paths obtained from
! by adding a sequence of steps consisting of the marked forbidden pattern
pl followed by f 0

l fall steps, for eachf 0
l , 0 � f 0

l < k + j l � i l � sl , we have
already obtained paths.

Figure 4.20 shows the complete mapping associated to the succession
rule (4.4) with cross-bi�x-free set Pj;i = f x3x2; x3xx xg.
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s − 2

l
k + j − i

s +1l

ls +1

k + j − i
ll

lB

lB

lB lB

lB

k

( )k

( s − 1)

)s − 1(

lB

lB

lB

lB

lB

lB

lBBl

ll

ll

ll

ll

l

)(

0( )

)0(

0)(

1)(

( )

)(

0

1

(

( )

1

1

(

j

)

s

s )

s − 1

s − 1 s − 2

l

Figure 4.19: The mapping associated to (k)
j l (k + j l � i l ) : : : (sl )(sl � 1)2 : : :

: : : (1)sl (0)sl +1 of (4.4)

� -paths in F

For each �-path ! in F having k as ordinate of its endpoint, we apply
the following succession rule, for eachk � 1:

(4.5)

8
>>>>>>>><

>>>>>>>>:

(k) 1 (k + 1)( k) � � � (2)(1)(0)

(k)
j 1 (k + j 1 � i 1)(k + j 1 � i 1 � 1) � � � (2)(1)(0)

(k)
j 2 (k + j 2 � i 2)(k + j 2 � i 2 � 1) � � � (2)(1)(0)

...

(k)
j m (k + j m � i m )(k + j m � i m � 1) � � � (2)(1)(0)
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(0)

(0)
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Figure 4.20: the complete mapping associated to the succession rule (4.4), being
Pj;i = f x3x2; x3xx xg

A �-path ! 2 F , with n rise steps and such that its endpoint has ordi-
nate k, providesk+2 lattice paths, with n+1 rise steps, according to the �rst
production of (4.5) having k + 1 ; : : : ; 1; 0 as endpoint ordinate, respectively.
These labels are obtained by adding to! a sequence of steps consisting of
one rise step followed byk + 1 � h fall steps for eachh, 0 � h � k + 1.

Moreover, a �-path ! 2 F , with n rise steps and such that its endpoint
has ordinate k, provides 1 + k + j l � i l lattice paths, with n + j l rise steps,

according to the production (k)
j l (k + j l � i l )(k + j l � i l � 1) � � � (2)(1)(0)

of (4.5) having k + j l � i l ; : : : ; 2; 1; 0 as endpoint ordinate, respectively, for
each l, 1 � l � m. These labels are obtained by adding to! a sequence of
steps consisting of the marked forbidden patternpl followed by k + j l � i l � h
fall steps, 0� h � k + j l � i l , for each l, 1 � l � m.

4.3.2 Proving the construction

The just described construction, both for �-paths and �-paths in F ,
generates 2C copies of each path havingC forbidden patterns such that
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2C� 1 are coded by a sequence of labels ending by a marked label, say (k),
and contain an odd number of marked forbidden patterns, and 2C� 1 are
coded by a sequence of labels ending by a non-marked label, say (k), and
contain an even number of marked forbidden patterns.

This observation is due to the fact that when a path is obtained either
according to the �rst production of ( 4.4) or according to the �rst production
of (4.5) then no marked forbidden pattern is added.

Moreover when a path is obtained either according to the production

(k)
j l (k + j l � i l ) : : : (sl )(sl � 1)2 : : : (1)sl (0)sl +1 of (4.4) or according to the

production (k)
j l (k + j l � i l )(k + j l � i l � 1) � � � (2)(1)(0) of (4.5) for each

l, 1 � l � m, then exactly one marked forbidden pattern is added. In any
case, the actions performed to obtain either the �rst label (0) according
to the �rst production of ( 4.4) or the

P sl
f l =1 f l marked labels, according to

the production (k)
j l (k + j l � i l ) : : : (sl )(sl � 1)2 : : : (1)sl (0)sl +1 of (4.4), for

each l, 1 � l � m, do not change the number of marked forbidden patterns
in the path.

Theorem 6 Let Pj;i = f p1(j 1; i 1); p2(j 2; i 2); : : : ; pm (j m ; i m )g be a cross-
bi�x-free set of patterns, none include in any other, such that each pattern
pl (j l ; i l ) = pl , 1 � l � m, starts with a rise step andjpl j1 = j l and jpl j0 = i l

with 0 < i l < j l . The generating tree of the paths inF [P j;i ], according to the
number of rise steps, is isomorphic to the tree having the root labelled(0)
and recursively de�ned by the succession rule (4.4), related to the shape of
the path ! 2 F , and the succession rule (4.5).

Proof. We have to show that the algorithm described in the previous
pages is a construction for the setF [P j;i ], according to the number of rise
steps. Therefore, all the paths in F with n rise steps must be obtained
and for each obtained path ! in F nF [P j;i ] having n rise steps, containing
C forbidden patterns and having height of its endpoint equal to k, is also
generated a path! in F nF [P j;i ] having n rise steps, containingC forbidden
patterns, having height of its endpoint equal to k and having the same shape
as ! but such that the last forbidden pattern is marked if it is not in ! and
vice-versa. This means that, if the last label of the code associated to! is
(k) then the one associated to! is (k).

The �rst assertion is an immediate consequence of the construction ac-
cording to the �rst production of ( 4.4).

In order to prove the second assertion we have to distinguish two cases
depending on whether the last forbidden patternp` is marked or not.

Let yL ` and yR ` be the ordinate of the initial point and ordinate the last
point of p` , respectively andh` be the largest ordinate in p` .

First case : the last forbidden pattern p` = x%̀x in ! is marked. In
the following we represent the marked forbidden patternp` by its minimal
bounding rectangleB ` .
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We consider the following subcases:

yL ` � 0: The path ! in F nF [P j;i ] can be written as ! = � p` � � , where � 2 F
and �; � 2 F [P j;i ] (see Figure4.21).

ν

B

 η

µ

Figure 4.21: A representation of the path ! in the caseyL ` � 0

If � is a �-path then the path ! which kills ! is obtained by adding on
� the path x%̀x� by applying consecutive and appropriate mappings
of the �rst production of ( 4.4). Otherwise, if � is a �-path then the
path ! which kills ! is obtained by adding on � the path x%̀x� by
applying consecutive and appropriate mappings of the �rst production
of (4.5). In each case the path� in ! is obtained as in ! .

yL ` < 0: In this case we distinguish the following two subcases:h` � 0 and
h` < 0

h` � 0: The path ! in F nF [P j;i ] can be written as ! = � x p` � , where
�;  2 F , � 2 F [P j;i ] (see Figure4.22).

γ

B

νµ

Figure 4.22: A representation of the path ! in the caseyL ` < 0 with h` � 0

In this case exists at least one point intersecting thex-axis which
is contained in p` .

Let & be the pre�x of the forbidden (but no marked) pattern p`

running from the point L ` to the leftmost point in which p` meets
with the x-axis. The path ! which kills ! is obtained by adding
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to � x& the path &0� by applying consecutive and appropriate
mappings of the �rst production of ( 4.4), where &0 is the su�x of
x%̀x running from the endpoint of &to the endpoint of p` .

h` < 0: The path ! in F nF [P j;i ] can be written as ! = � x p` �x� , where
�;  2 F and �; � 2 F [P j;i ] (see Figure4.23).

P

B

η
γ

µ
ν

Figure 4.23: A representation of the path ! in the caseyL ` < 0 with h` < 0

We observe that the path  can contain marked forbidden pat-
terns, with endpoints at ordinate less than 0, or not. If the path
 contains no marked forbidden patterns, then it remains strictly
under the x-axis, otherwise the marked forbidden patterns inter-
sect the x-axis when its largest ordinate is greater then 0. More-
over, the path � remains strictly under the x-axis. We distinguish
two subcases.

In the �rst one the path  contains no marked forbidden patterns
and remains strictly under the x-axis. The path ! which kills
! is obtained by performing on � the following: add the path
xx%`x�x by applying consecutive and appropriate mappings of
the �rst production of ( 4.4), apply the actions giving the label
(0) in case of no marked forbidden patterns. The path� in ! is
obtained as in ! .

In the latter subcase the path  contains at least one marked for-
bidden pattern. We consider the rightmost point P of the path
x p` �x with lowest ordinate. The path ! which kills ! is obtained
by performing on � the following: add the path in x%`x�x run-
ning from P to the endpoint of the path by applying consecutive
and appropriate mappings of the productions of (4.4), add the
path in x%`x�x running from its initial point to P by applying
consecutive and appropriate mappings of the production of (4.4),
apply the cut and paste actions in case of marked forbidden pat-
terns. Obviously, the last forbidden pattern in the path must be
generated by applying consecutive and appropriate mappings of
the �rst production of ( 4.4). The path � in ! is obtained as in! .
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Second case: the last forbidden pattern p` in ! is not a marked forbid-
den pattern. We consider the subcases:yL ` � 0 and yL ` < 0.

yL ` � 0: The path ! in F nF [P j;i ] can be written as ! = � p` � � , where � 2 F
and �; � 2 F [P j;i ] (see Figure4.24).

 η

p

ν

µ

Figure 4.24: A representation of the path ! in the caseyL ` � 0

If � is a �-path then the path ! which kills the path ! is obtained
by adding on � the path p` � by applying an appropriate mapping

of (k)
j ` (k + j ` � i ` ) : : : (s` ) : : : (1)(0) of (4.4), and consecutive and

appropriate mappings of the �rst production of ( 4.4).

Otherwise, if � is a �-path then the path ! which kills ! is obtained
by adding on � the path p` � by applying an appropriate mapping

of (k)
j ` (k + j ` � i ` ) : : : (s` ) : : : (1)(0) of (4.5), and consecutive and

appropriate mappings of the �rst production of ( 4.5). In each case the
path � in ! is obtained as in ! .

yL ` < 0: In this case we distinguish the following two subcases:yR ` > 0 and
yR ` � 0.

yR ` > 0: The path ! in F nF [P j;i ] can be written as ! = � x p`x f � , where
�;  2 F , � 2 F [P j;i ] and 0 � f � yR ` (see Figure4.25).

ν

p

γ

µ

Figure 4.25: A representation of the path ! in the caseyL ` < 0 with yR ` > 0

Let P be the rightmost point of the path x p` with lowest ordi-
nate. The path ! which kills ! is obtained by performing on� the
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following: add the path in  p` running from P to the endpoint
of the path by applying consecutive and appropriate mappings
of (4.4), add the path in  p` running from its initial point to
P by applying consecutive and appropriate mappings of (4.4),
apply the cut and paste actions in case of marked points and
add the path x f . Obviously the last forbidden pattern in the
path must be generated by applying the mapping of production

(k)
j ` (k + j ` � i ` ) : : : (s` ) : : : (1)(0) of (4.4). The path � in ! is

obtained as in ! . Note that, in case 0 � f < y R ` any pre�x of
� in ! which running from the end of the path � x p`x f to the
x-axis is obtained by applying the mapping associated to the �rst
production of (4.5).

yR ` � 0: The path ! in F nF [P j;i ] can be written as ! = � x p` �x� , where
�;  2 F and �; � 2 F [P j;i ] (see Figure4.26).

η

p

P

ν
µ

γ

Figure 4.26: A representation of the path ! in the caseyL ` < 0 with yR ` � 0

We consider the rightmost point P of the path x p` �x with low-
est ordinate. The path ! which kills ! is obtained by perform-
ing on � the following actions: add the path in  p` �x running
from P to its endpoint by applying consecutive and appropri-
ate mappings of the productions of (4.4), add the path in  p` �x
running from its initial point to P by applying consecutive and
appropriate mappings of the productions of (4.4), apply the cut
and paste actions giving the label (0) in case of marked forbid-
den patterns. Obviously, the last marked forbidden pattern p`

in ! is generated by an appropriate mapping of the production

(k)
j ` (k + j ` � i ` ) : : : (s` ) : : : (1)(0). The path � in ! is obtained

as in ! . Note that, if yR ` = 0 then the path ! in F nF [P j;i ] can
be written as ! = � x p` � and operations above described are
applied on the path  p` .

We observe that for each path! in F nF [P j;i ] having n rise steps, con-
taining C forbidden patterns and having last label (k) of the associated
code, there exists one and only one path! in F nF [P j;i ] having n rise steps,
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containing C forbidden patterns and having last label (k) of the associated
code. The paths! and ! have the same shape, exactly the same number and
positions of the forbidden patterns except for the last one which is marked
in ! if it is not in ! and vice-versa.

This assertion is consequence of the constructions in the proof, as the
described actions are univocally determined. Therefore, it is not possible
to obtain a path ! which kills a given path ! by applying two distinct
procedures. �
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5
Positivity problem

This chapter shows as the succession rules can be applied in a di�erent
�eld from pattern avoidance. Indeed, we present a method to pass from a
recurrence relation having constant coe�cients (in short, a C-recurrence) to
a �nite succession rule de�ning the same number sequence. We also discuss
the applicability of our method as a test for the positivity of a number
sequence.

5.1 From C-sequences to succession rules
The main purpose of our research is to develop a general formal method

to translate a given recurrence relation into a succession rule de�ning the
same number sequence. By abuse of notation, in this case we will say that
the recurrence relation and the succession rule areequivalent.

As a �rst step we deal with linear recurrence relations with integer coef-
�cients [ 19, 27]. Following Zeilberger [83], we will address to these asC-�nite
recurrence relations, and to the de�ned sequences asC-�nite sequences.
This section is organized as follows.

i) First we deal with C-sequences of the form:

(5.1) f n = a1f n� 1 + a2f n� 2 + � � � + ak f n� k ai 2 Z; 1 � i � k

with default initial conditions, i.e. f 0 = 1 and f h = 0 for all h < 0.

We translate the given C-�nite recurrence relation into an extended
succession rule, possibly using both jumps and marked labels (Sec-
tion 5.1.1).

ii) Then, we recursively eliminate jumps and marked labels from such an
extended succession rule, thus obtaining a �nite succession rule equiv-
alent to the previous one (Section5.1.2).

We remark that steps i) and ii) can be applied independently of the
positivity of f f ngn� 0, but at this step we cannot be sure that all the
labels of the obtained rule are nonnegative integers.
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CHAPTER 5. POSITIVITY PROBLEM

iii) We state a condition to ensure that the labels of the obtained succession
rule are all nonnegative. If such a condition holds, then the sequence
f f ngn� 0 has all positive terms, thus we refer to this aspositivity con-
dition (Section 5.1.3).

iv) We show how our method can be extended toC-sequences with generic
initial conditions (Section 5.1.4).

5.1.1 C-sequences with default initial conditions

Let us consider a C-�nite recurrence relation expressed as in (5.1), with
default initial conditions and the related C-sequencef f ngn� 0. We recall that
the generating function of f f ngn� 0 is rational, and precisely it is

(5.2) f (x) =
X

n� 0

f nxn =
1

1 � a1x � a2x2 � � � � � akxk :

The �rst step of our method consists into translating the C-�nite re-
currence relation (5.1) into an extended succession rule. The translation
is rather straightforward, since in practice it is just an equivalent way to
represent the recurrence relation.

Proposition 7 The recurrence relation (5.1) with default initial conditions
is equivalent to the following extended succession rule:

(5.3)

8
>>>>>><

>>>>>>:

(a1)

(a1) 1 (a1)a1

(a1)
2

 (a1)a2

...

(a1)
k

 (a1)ak

where (a1) � ai = ( a1)ai if ai > 0, 1 � i � k.

For example, the recurrence relationf n = 3 f n� 1 +2 f n� 2 � f n� 3 with de-
fault initial conditions, de�nes the sequence 1; 3; 11; 38; 133; 464; 1620; 5655; : : : ;
and it is equivalent to the following extended succession rule:

(5.4)

8
>>><

>>>:

(3)

(3) 1 (3)3

(3)
2

 (3)2

(3) 3 (3)

Figure 5.1 shows the �rst few levels of the generating tree associated to the
jumping and marked succession rule (5.4).
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38(3) (3)(3)(3)(3) (3)(3) (3) (3)(3)(3) (3)(3) (3) (3)(3)(3) (3)(3) (3)(3)(3)(3)(3)(3) (3)(3)(3)(3)(3)(3) (3)

(3)

(3)(3)

(3)(3)(3)

(3)(3)

(3)(3)(3) (3)(3)

(3)(3)(3)(3)

(3)(3)(3)

(3)(3)(3)

1

3

11

(3)

Figure 5.1:Some levels of the generating tree associated to the extended succession
rule (5.4)

5.1.2 Elimination of jumps and marked labels

The successive step of our method consists into recursively eliminating
jumps from the extended succession rule (5.3) in order to obtain a �nite
succession rule which is equivalent to the previous one. Once jumps have
been eliminated we will deal with marked labels.

Proposition 8 The succession rule:

(5.5)

8
>>>>>>>><

>>>>>>>>:

(a1)
(a1)  (a1 + a2)(a1)a1 � 1

(a1 + a2)  (a1 + a2 + a3)(a1)a1+ a2 � 1

...

(
P k� 1

l=1 al )  (
P k

l=1 al )(a1)(
P k � 1

l =1 al )� 1

(
P k

l=1 al )  (
P k

l=1 al )(a1)(
P k

l =1 al )� 1

is equivalent to the recurrence relationf n = a1f n� 1 + a2f n� 2 + � � � + ak f n� k ,
ai 2 Z; 1 � i � k, with default initial conditions.

Proof. Let Ak (x) be the generating function of the label (
P k

l=1 al ) re-
lated to the succession rule (5.5). We have:

A1(x) = 1 + ( a1 � 1)xA 1(x) + ( a1 + a2 � 1)xA 2(x) + : : :

� � � + ( a1 + a2 + � � � + ak � 1)xA k (x);

A2(x) = xA 1(x);

A3(x) = xA 2(x) = x2A1(x);
...

Ak� 1(x) = xA k� 2(x) = xk� 2A1(x);

Ak (x) = xA k� 1(x) + xA k (x) = xk � 1

1� x A1(x):

103



CHAPTER 5. POSITIVITY PROBLEM

Therefore,

A1(x) = 1 + x(a1 � 1)A1(x) + x2(a1 + a2 � 1)A1(x) + : : :

� � � + xk

1� x (a1 + a2 + � � � + ak � 1)A1(x);

and we obtain the generating function:

A1(x) =
1 � x

1 � a1x � a2x2 � � � � � akxk :

At this point we can consider the generating function determined by the
succession rule (5.5) as following:

A1(x) + A2(x) + � � � + Ak� 1(x) + Ak (x) =

= A1(x) + xA 1(x) + � � � + xk� 2A1(x) +
xk� 1

1 � x
A1(x) =

=
(1 � x) + x(1 � x) + � � � + xk� 2(1 � x) + xk� 1

1 � a1x � a2x2 � � � � � akxk =

=
1

1 � a1x � a2x2 � � � � � akxk :

�

Following the previous statement, the extended succession rule (5.4) {
determined in the previous section { can be translated into the succession
rule (5.6) and Figure 5.2 shows some levels of the associated generating tree.

(5.6)

8
>><

>>:

(3)
(3)  (5)(3)2

(5)  (4)(3)4

(4)  (4)(3)3

(5)(3)(3)

11

3

1

(5)(3)

(3) (3) (5) (3) (5)(3)

(3)

(3)

(3)(3)

(5)(3)(3) (4)(3)(3)(3)(5)(3)(3)

(3)

(5)(3)(3) (5)(3)(3)

(3) (4)

(5)(3)(3) (5)(3)(3) (4)(3)(3)(3)(3)(5)(3)(3) (4)(3)(3)(3)(3) 38

Figure 5.2: Four levels of the generating tree associated to the succession rule (5.6)
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We observe that the previously obtained succession rule is an ordinary
�nite succession rule, but it may happen that the value of the label (

P i
l=1 al )

is negative, for somei with i � k, then the succession rule (5.5) contains
marked labels.

For example, the recurrence relationf n = 5 f n� 1� 6f n� 2+2 f n� 3, with de-
fault initial conditions, which de�nes the sequence 1; 5; 19; 67; 231; 791; 2703;
9231; : : : ; (sequence A035344 in the The On-Line Encyclopedia of Integer
Sequences [71]) is equivalent to the following succession rule:

(5.7)

8
>><

>>:

(5)
(5)  (� 1)(5)4

(� 1)  (1)(5)2

(1)  (1)

Figure 5.3shows some levels of the generating tree associated to the extended
succession rule (5.7), which is represented using a \compact notation", i.e.,
by convention, the number of nodes at a given leveln is obtained by means
of the algebraic sum of the exponents of the labels lying at leveln.

(5)

(1) (5)

(5)(−1)(1) (5)(5)(−1)

(−1) (5)

(5)(−1)

64168482

1642

4

67

19

5

1

(1)

Figure 5.3: Compact notation for the generating tree associated to the succession
rule (5.7)

Therefore our next goal is to remove all possible marked labels from the
succession rule. We observe that in order to obtain this goal, the recurrence
relation f n = a1f n� 1 + a2f n� 2 + � � � + ak f n� k with default initial conditions
needsa1 > 0. We assume that this condition holds throughout the rest of
the present section.

In order to furnish a clearer description of our method, we start consid-
ering the casek = 2.
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Proposition 9 The C-�nite recurrence f n = a1f n� 1 + a2f n� 2, with default
initial conditions, and having a1 > 0, is equivalent to

(5.8)

8
>><

>>:

(a1)
(a1)  (0)q2 (r2)(a1)a1 � (q2+1)

(r2)  
�

(0)q2 (r2)
� q2

(0)q2 (r2)(a1)r 2 � (q2+1) 2

where, by convention, the label(0) does not produce any son, andq2; r2 are
de�ned as follows:

- if a1 + a2 � 0 then q2; r2 > 0 such that ja1 + a2j = q2a1 � r2;

- otherwise q2 = 0 and r2 = a1 + a2.

Proof. We have to distinguish two cases: in the �rst one a1 + a2 � 0
and in the second onea1 + a2 > 0.

If a1 + a2 � 0, we have to prove that the generating tree associated
to the succession rule (5.8) is obtained by performing some actions on the
generating tree associated to the extended succession rule (5.9) which is
obviously equivalent to the recurrencef n = a1f n� 1 + a2f n� 2 having a1 > 0
and a2 < 0, with f 0 = 1 and f h = 0 for each h < 0.

(5.9)

8
><

>:

(a1)

(a1)
1

 (a1)a1

(a1) 2 (a1)a2

The proof consists in eliminating jumps and marked labels at each level of
the generating tree associated to succession rule (5.9), sketched in Figure5.4,
by modifying the structure of the generating tree, still maintaining f n nodes
at level n, for each n.

Let (a1) be a label at a given leveln. We denote by B1 the set of a1

labels (a1) at level n + 1 and by B2 the set of a2 labels (a1) at level n + 2,
see Figure5.4. We remark that ( a1)a2 = (a1) : : : (a1)

| {z }
� a2

:

In order to eliminate both jumps and marked labels in B2 at level 2
produced by the root (a1) at level 0, we have to consider the set ofa1 labels
(a1) in B1 at level 2 obtained by (a1) which lie at level 1.

At level 2, each label (a1) in a given setB1 kills one and only one marked
label (a1) in B2. At this point ja1+ a2j labels(a1) in B2 always exist at level 2.

In order to eliminate such marked labels we have to consider more than
a single set B1 of label (a1) at level 2. Let q2 be a su�cient number of
sets B1 at level 2 able to kill all the labels (a1) in B2 at level 2. Therefore
ja1 + a2j = q2a1 � r2 with q2; r2 > 0.

By setting q2 labels (a1) at level 1 equal to (0) and one more label (a1)
to ( r2), we have the desired number of labels (a1) at level 2.
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1
..

. . . . ..

a(   )1 1(   )a. ..

1(   )a a(   )1. . .B
1

. . .. ..
1(   )aa(   )1

B
1 1(   )a a(   )1. . .B

1

. ..
1(   )aa(   )1

B
1

1(   )a. ..a(   )1a(   )1. . .a(   )11
B

1(   )a

1(   )a a(   )1. . .B
1 1(   )a . . . a(   )1

B
2

. ..
1(   )aa(   )1

B
1 1(   )a. ..a(   )12

B
1(   )a . . . a(   )1

B
21(   )a. ..a(   )12

B B.

Figure 5.4: Step 1

Note that the marked labels at level 2 are not generated and the labels (a1)
at level 1 are revised in order to have the right number of labels at level 2,
see Figure5.5.

1

..

. . .

. . .

. ..

1(   )a

1(   )a. ..a(   )12
B

1(   )a . . . a(   )1
B

21(   )a. ..a(   )12
B

. . .a(   )1

2

1
B

1(   )a1(   )a. ..
1(   )a

a(   )1. . .a(   )1

2r (   ) (   )0 0(   )

q

B

.

Figure 5.5: Step 2

Moreover, when a label (a1) kills a marked label (a1) at a given level n,
then the subtree, having such label (a1) as its root, kills the subtree having
(a1) as its root. So, at level 2 when a label (a1) of B1 kills a label (a1) of B2

then the two subtrees having such labels as their roots are eliminated too,
see Figure5.5.

On the other hand, the q2 + 1 sets B2 at level 3 obtained by the q2 + 1
labels at level 1, once labelled with (a1) and now having value r2; 0; : : : ; 0,
respectively, are always present in the tree, see Figure5.5.

In order to eliminate such undesired marked labels we can only set the
production of (r2). As a set B2 at a given level is eliminated by usingq2 + 1
labels at previous level then (r2) must give (r2) (0) : : : (0)

| {z }
q2

exactly q2 + 1

times. This explains the �rst part of the production rule of the label ( r2) in
rule (5.8).
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Since (r2) has r2 sons then the remainingr2 � (q2 + 1) 2 labels are set to
be equal to (a1) as in the previous case, see Figure5.6.

1

..

. . .

. ..

1(   )a

. . .a(   )1 2r(   ) (   )0
2

q

. . .

r2(   ) 0(   ) (   )0. ..
2

q

. ..r2(   ) 0(   ) (   )0. ..
2

q

1(   )a. ..
1(   )a

(   )00(   )r2(   ) ... . .2r(   ) (   )0 0(   ). .a(   )1. . .a(   )1 1(   )a . ..
1(   )a (   )00(   )r2(   ) .. . .. 2r(   ) (   )0 0(   ). .

(   )0B

.

Figure 5.6: Step 3

By the way, the modi�ed q2 + 1 labels having value r2; 0; : : : ; 0, respec-

tively, at a given level n, produce the labels
�

(0)q2 (r2)
� q2+1

(a1)r 2 � (q2+1) 2
at

level n +1. Just as obtained for levels 1 and 2, the labels
�

(0)q2 (r2)
� q2+1

au-
tomatically annihilate the remaining q2 + 1 sets B2 of marked labels at level
n + 2, once obtained by the modi�ed q2 + 1 labels at level n, see Figure5.6.

Till now we have modi�ed a portion T of the total generating tree in
a way that it does not contain any marked label. Note that, the remaining
labels (a1) will be the roots of subtrees which are all isomorphic toT.

The value f n de�ned by the tree associated to the extended succession
rule (5.9), is given by the di�erence between the number of non-marked and
marked labels.

The just described algorithm modi�es the number of generated non-
marked labels and sets to 0 the number of marked ones in a way thatf n

is unchanged, for eachn, so the succession rule (5.8) is equivalent to the
recurrencef n = a1f n� 1 + a2f n� 2.

In the casea1 + a2 > 0 we have marked labels only ifa2 < 0. In this case
a single setB1 is su�cient to kill all the marked labels in B2 at level 2.

By the way, both in the case a2 < 0 and a2 > 0 we have that q2 = 0
and r2 = a1 + a2, and the succession rule (5.8) has the same form of the
rule (5.5) which is equivalent to the recurrencef n = a1f n� 1 + a2f n� 2 having
a1 > 0 and a2 2 Z, with f 0 = 1 and f h = 0 for each h < 0. �

The statement of Proposition 9 can be naturally extended to the general
casek > 2.
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Proposition 10 The C-sequencef f ngn satisfying f n = a1f n� 1 + a2f n� 2 +
� � � + ak f n� k , with default initial conditions and a1 > 0 is equivalent to

(5.10)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(a1)
(a1)  (0)q2 (r2)(a1)a1 � (q2+1)

(r2)  
�

(0)q2 (r2)
� q2

(0)q3 (r3)(a1)r 2 � (q2 (q2+1)+ q3+1)

...

(r i )  
�

(0)q2 (r2)
� qi

(0)qi +1 (r i +1 )(a1)r i � (qi (q2+1)+ qi +1 +1)

...

(r k )  
�

(0)q2 (r2)
� qk

(0)qk (r k )(a1)r k � (qk (q2+1)+ qk +1)

where the parametersqi and r i , with 2 � i � k, can be determined in the
following way:

- if
P i

l=1 al � 0 then qi ; r i > 0 such that j
P i

l=1 al j = qi a1 � r i ,

- otherwise qi = 0 and r i =
P i

l=1 al .

The proof of the Proposition 10 is quite similar to the proof of Proposition 9.
It has the same level of di�culty but it is more cumbersome, so it is omitted
for brevity.

Using Proposition 10, we can translate the previously considered recur-
rence relation f n = 5 f n� 1 � 6f n� 2 + 2 f n� 3, with default initial conditions,
into the following ordinary succession rule:

(5.11)

8
>><

>>:

(5)
(5)  (0)(4)(5) 3

(4)  (0)(4)(1)(5)
(1)  (1)

being q2 = 1, r2 = 4, q3 = 0 and r3 = 1.

5.1.3 Positivity condition

The statement of Proposition 10is indeed a tool to translate C-recurrences
into �nite succession rules. However this property turns out to be e�ectively
applicable only when the labels of the succession rule are all positive, and the
reader can easily observe that Proposition10 does not give us an instrument
to test whether this happens or not.

In particular, if the labels of the succession rule are all positive then
the terms of the C-sequence are all positive. It is then interesting to relate
our problem with the so called positivity problem, which we have already
mentioned in the Introduction.
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Positivity Problem: given a C-�nite sequencef f ngn� 0, establish if all its
terms are positive.

We recall that the problem was originally proposed as an open problem
in [17], and then re-presented in [66] (Theorems 12.1-12.2, pages 73-74), but
no general solution has been found yet.

Moreover, the positivity problem can be solved for a large class of C-
�nite sequences, precisely forN-rational sequences. We recall that the class
of N-rational series is precisely the class of the generating functions of reg-
ular languages, and that Soittola's Theorem [72] states that the problem of
establishing whether a rational generating function isN-rational is decidable.

Let us start examining the case of C-recurrences of degree 2. So, let
f n = a1f n� 1 + a2f n� 2 be a recurrence relation, witha1 > 0 and a2 2 Z.

By referring to the succession rule (5.8), precisely to the casea1+ a2 � 0,
we observe that the succession rule equivalent to the recurrence relation is
an ordinary rule (i.e., it has all positive labels) if and only if the following
condition is veri�ed:

(5.12)
�

a1 � (q2 + 1) � 0
r2 � (q2 + 1) 2 � 0

As r2 = q2a1 � j a1 + a2j = q2a1 + a1 + a2 then r2 � (q2 + 1) 2 � 0 means
q2

2 + (2 � a1)q2 + 1 � a1 � a2 � 0. This inequality has solution if and only
if a1

2 + 4a2 � 0, and this is clearly a necessary and su�cient condition to
ensure the positivity of all the terms of f n [11].

Let us now consider a generic C-recurrence of degreek. Using a similar
reasoning, and following Proposition10 we can prove:

Corollary 1 Let us consider the recurrence relationf n = a1f n� 1+ a2f n� 2+
� � � + ak f n� k having a1 > 0 and ai 2 Z, 2 � i � k, with f 0 = 1 and f h = 0
for each h < 0. If

(5.13)

8
>>>>>>>><

>>>>>>>>:

a1 � (q2 + 1) � 0
r2 � (q2(q2 + 1) + q3 + 1) � 0
...
r i � (qi (q2 + 1) + qi +1 + 1) � 0 ; 3 � i � k � 1
...
r k � (qk (q2 + 1) + qk + 1) � 0

then f n > 0 for all n.

As r i =
P i

l=1 al + qi a1, 2 � i � k, then the system (5.13) can be rewritten
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in the following form:

(5.14)

8
>>>>>><

>>>>>>:

a1 � (q2 + 1) � 0
...P i

l=1 al + qi a1 � (qi (q2 + 1) + qi +1 + 1) � 0 ; 2 � i � k � 1
...
P k

l=1 al + qka1 � (qk (q2 + 1) + qk + 1) � 0:

As previously mentioned, condition (5.14) ensures that all the labels
of the succession rules equivalent to the given C-recurrence relation are
positive, hence all the terms f n are positive. Thus it can be viewed as a
su�cient condition to test the positivity of a given C-recurrence relation.

Unfortunately, this is not a necessary condition to test positivity, then
there are cases of positive C-sequences for which our method fails to prove
positivity. A simple example is given by any positive non N-rational C-
sequence. The reader can �nd an instance of such sequences in [47].
It would be more interesting to give an example of aN-rational C-sequence
for which our method is not able to prove positivity, but we have not been
able to �nd any such example.

Clearly, any C-sequence satisfying the positivity condition has aN-
rational generating function (in fact, any �nite succession rule may be re-
garded as a �nite state automaton), thus our method can be suitably used
to test the N-rationality of a sequence.
Though it is not our intention to deepen the computational complexity of
our test, we remark that, despite the methods presented in [19, 47, 62], our
method does not deal with calculating polynomial roots.

In order to give an idea of the computational cost to solve the system
(5.14) we consider the worst case that is when

P i
l=1 al � 0, 2 � i � k, and

the system itself has no solution.
In this case all the possible values for eachqi , 2 � i � k, must be checked

in order to conclude that the system (5.14) does not admit any solution.
As q2 can range in the close set [1; a1 � 1] and qi +1 in [1;

P i
l=1 al + qi a1 �

(qi (q2 + 1) � 1] then we have

1 + ( a1 � 1)
Q k� 1

i =2

� P i
l=1 al + a1qi � qi (q2 + 1) � 1

�

where the �rst 1 accounts the check to verify
P k

l=1 al + qka1 � (qk (q2 + 1) +
qk + 1) � 0.

An average complexity study of our test is a further development. Any-
way, the referred experimental results give a su�ciently short computational
time to test condition ( 5.14).
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5.1.4 Generic initial conditions

It is now possible to use the statement of Proposition10 to treat the
case of C-recurrence relations with generic initial conditions. The following
result is obtained by simply adapting the productions of the labels in the
�rst levels of the generating tree to the given initial conditions, then using
the productions of Proposition 10. So, we have two sets of productions: the
ones stating the initial conditions, and the remaining ones de�ning all the
other levels.

Proposition 11 Let us consider the C-�nite recurrence relation f n = a1f n� 1+
a2f n� 2 + � � � + ak f n� k , ai 2 Z, 1 � i � k, and let us assume that the initial
conditions are f 0 = 1 and f i = hi , with hi 2 Z, 1 � i < k , then it can be
translated into the following extended succession rule:

(5.15)

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

(h1)

(h1)
1

 (a1)h1

...

(h1)
i

 (a1)h i �
P i � 1

j =1 h j ai � j ; 1 < i < k
...

(h1)
k

 (a1)ak

(a1) 1 (a1)a1

(a1)
2

 (a1)a2

...

(a1)
k

 (a1)ak

For example, the recurrence relationf n = 3 f n� 1 +2 f n� 2 � f n� 3 with f 0 = 1,
f 1 = 2 and f 2 = 3, which de�nes the sequence 1; 2; 3; 12; 40; 141; 491; 1715; : : :,
is equivalent to the following extended succession rule:

(5.16)

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(2)

(2) 1 (3)2

(2)
2

 (3)3

(2) 3 (3)

(3)
1

 (3)3

(3) 2 (3)2

(3) 3 (3)

Figure 5.7 shows some levels of the generating tree associated to the
extended succession rule (5.16).
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40(3) (3) (3) (3) (3) (3) (3)

(3) (3) (3) (3)

(3) (3)

(3)

(2)

2

6 3

4 18 9

2 12 54 12 27 6 3

1

2

3

12

Figure 5.7: Compact notation for the generating tree associated to the succession
rule (5.16)

Following the described method in Section5.1.2 to eliminate jumps and
marked labels, we can translate the extended succession rule (5.16) into
the ordinary succession rule (5.17), where the labels (3), (3)1 and (3)2 are
di�erent labels with di�erent productions.

(5.17)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(2)
(2)  (0)(3)1

(3)1  (6)(3)2

(6)  (3)5(3)2

(3)2  (4)(3)2

(3)  (5)(3)2

(5)  (4)(3)4

(4)  (4)(3)3
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6
Conclusions

In Chapter 2 we propose an uni�ed algorithmic approach to study binary
words, having the number of ones greater than or equal to the number of
zeroes, and avoiding a �xed pattern p. Initially, we consider p = p(j ) =
1j +1 0j , j � 1, then we pass top(j; j ) = 1 j 0j , j � 1, and �nally the approach
is generalized top(j; i ) = 1 j 0i , 0 < i < j .

In Chapter 4, using the results of Chapter 3 we extend the results ob-
tained in Chapter 2 passing from the avoidance of a single pattern to a set
of patterns. The used technics always involve the generation of all words
and then the delation of the undesired ones. The main result on this chapter
is that the construction and the enumeration of the studied class of words
does not depend on the shape of the avoided patterns themselves, but only
on the number of ones in the patterns.

Further studies could take into consideration other parameters of these
structures instead of the number of ones. These studies could be the �rst
step to investigate a possible uniform constructive algorithm for pattern
avoidance in words. In order to do that other forbidden patterns should be
take into consideration like the ones having the number of 1's less then the
number of 0's.

The words studied in this thesis have the restriction that the number of
ones is greater than or equal to the number of zeroes, it could be interesting
to investigate if the proposed algorithmic approach can be slightly modi�ed
in order to consider di�erent restrictions on the words. These studies could
be carry out considering an alphabet having cardinality greater than 2.

In Chapter 3, we introduce a general constructing method for the sets
of cross-bi�x-free binary words of �xed length n based upon the study of
lattice paths on the Cartesian plane. This approach enables us to obtain
the cross-bi�x-free set having greater cardinality than the ones proposed in
[4]. Moreover, we prove that this set is a non-expandable cross-bi�x-free set.
The non-expandable property is obviously a necessary condition to obtain
a maximal cross-bi�x-free set, anyway we are not able to �nd and prove a
su�cient condition.

Further studies could prove that this set is maximal or not by �nding a
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new set having greater cardinality of this one. Anyway, it should be chal-
lenging to determine if the problem of proving that, a given non-expandable
cross-bi�x-free set is maximal, is decidable or not. In the �rst case an accu-
rate study of the algorithmic complexity would be required. This question
arise from the fact that the problem of determining the maximal cross-bi�x-
free set is strictly lied to the problem of �nding the maximum size of clique
in a given graph.

Successive studies should take into consideration the general study of
cross-bi�x-free sets on an alphabet having cardinality grater than 2.

Another interesting research line is to investigate the relations between
the distributed sequences in [50] and the proposed set.

In Chapter 5 we present a general method to translate a given C-�nite
recurrence relation into an ordinary succession rule and we have proposed
a su�cient condition for testing the positivity of a given C-�nite sequence.
A further development could take into consideration the average complexity
necessary to prove the positivity of a given C-�nite sequence. Afterwards,
it should be interesting to develop the study concerning the C-recurrence
relations with generic initial conditions in order to examine in depth the
potentiality of our method.

Moreover, we would like to show that some of our ideas can be applied to
the case of holonomic integer sequences, i.e., those satisfying a linear recur-
rence relation with polynomial coe�cients. Just to have a simple example,
let us consider theinvolutions of n, enumerated by the sequencef f ng de�ned
by the holonomic recurrence relation

(6.1) f n = f n� 1 + ( n � 1)f n� 2;

with f 0 = 1, f 1 = 1 (sequence A000085 in the The On-Line Encyclopedia of
Integer Sequences [71]).

We easily observe that, using the same argument of Proposition7, we
can translate the recurrence relation (6.1) into an in�nite succession rule
(possibly having marked labels and jumps), where now we adopt the con-
vention that a generic label (k) is placed at the level k of the generating
tree:

(6.2)

8
><

>:

(0)

(k) 1 (k + 1)

(k) 2 (k + 2) k+1

The successive step is to �nd a way how to convert such a rule into an
ordinary succession rule. Referring to (6.2), this can be done by eliminating
\by hand" marked labels and jumps, then re-writing the (ordinary) rule as
follows:

(6.3)
�

(1)
(k)  (k � 1)k� 1(k + 1)
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We believe that such a method should be formalized in some further
works, and then applied to automatically convert the obtained rule into an
ordinary succession rule. Moreover, from this method, we could also develop
a more general criterion for proving the positivity of an holonomic sequence.

Finally, it could be interesting to de�ne a language, possibly with for-
bidden patterns, starting from a generic recurrence relation.
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