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Sommario

La combinatoria è un’importante area della matematica, riguardante lo studio dell strut-
ture discrete. Negli ultimi anni la combinatoria ha assunto un ruolo rilevante in molte disci-
pline scientifiche, come l’informatica teorica, la fisica statistica e la biologia. Infatti, vari
problemi che sorgono da queste discipline possono essere risolti utilizzando tecniche di com-
binatoria enumerativa. Questo è possibile quando tali problemi sono riconducibili allo studio
di semplici oggetti, come grafi, alberi, cammini nel piano.

Questa tesi si colloca nell’ambito della combinatoria enumerativa e biettiva: facciamo uso
di biiezioni e di un metodo per l’Enumerazione di Oggetti Combinatori (ECO) per risolvere
dei problemi di combinatoria. In particolare, viene fatto un ampio studio sulle relazioni tra il
metodo ECO ed un altro metodo ricorsivo per l’enumerazione di oggetti combinatori, quello
delle grammatiche ad oggetti.

Il metodo ECO, introdotto da Pinzani et al., costruisce un oggetto mediante l’espansione
locale di un altro più piccolo. Spesso accade che un operatore ECO, ϑ, faccia crescere
gli oggetti di una classe O con una certa regolarità. In questo caso ϑ può essere facil-
mente descritto da una regola di successione Ω, che è un sistema costituito da un assioma
e da un insieme di produzioni. L’assioma (a) rappresenta il numero di oggetti prodotti
dall’oggetto più piccolo per mezzo dell’operatore ϑ. Una produzione di Ω è della forma
(k)→ (e1(k))(e2(k)) . . . (ek(k)), dove (k) rappresenta il numero di oggetti O1, . . . , Ok prodotti
da un qualsiasi oggetto O ∈ O ed ei(k) rappresenta il numero di oggetti prodotti da Oi, per
i = 1 . . . k. Sia p il parametro secondo il quale ϑ fa crescere gli oggetti, allora Σ = (O, p, ϑ,Ω)
viene detto un ECO-sistema.

Le grammatiche ad oggetti, introdotte da Fédou e Dutour, descrivono gli oggetti di O
per mezzo di operazioni di composizione degli stessi, a partire da oggetti più piccoli. Una
grammatica ad oggetti è rappresentata da 〈O,E,Φ,O〉, dove O è una famiglia finita di classi
di oggetti, E è una famiglia finita di sottoclassi costituite dagli oggetti più piccoli di ogni
classe appartenente ad O, Φ è l’insieme delle operazioni sugli oggetti ed O ∈ O è la classe
generata dalla grammatica. Una grammatica ad oggetti si dice completa e non ambigua
quando vengono generati tutti gli oggetti della classe O ma una volta sola.

La tesi inizia (Capitolo 1) con un’introduzione sulle strutture che vengono utilizzate,
sul metodo ECO e sulle grammatiche ad oggetti. Poi si divide in due parti. La prima parte
riguarda l’analisi di problemi riguardanti le regole di successione: il problema di individuare
classi di regole di successione equivalenti ed il problema di trovare regole di successione che
descrivano la sequenza definita da una ricorrenza lineare. La seconda parte contiene il risultato
principale della tesi. Infatti si dimostra come una qualsiasi classe di oggetti generata da una
grammatica ad oggetti completa e non ambigua, possa essere descritta da un ECO-sistema
secondo un parametro lineare. Questo risultato è infine esteso al caso di parametri q-lineari
naturali per le grammatiche unidimensionali.

Nei dettagli, la tesi è organizzata come segue. La prima parte è divisa in due capitoli.
Nel paragrafo 2.1 del Capitolo 2, si introduce il problema dell’equivalenza fra regole di
successione e si richiamano i risultati principali esistenti per le regole di successione finite e
fattoriali. Nel paragrafo 2.2 si dimostra l’equivalenza di due insiemi infiniti di regole di succes-
sione, legate ai numeri di Catalan e di Schröder. La dimostrazione dell’equivalenza di queste
regole è biettiva, nel senso che si determinano due diverse costruzioni ECO che descrivono
la stessa classe di oggetti secondo lo stesso parametro. A tal fine, vengono presentate due
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nuove costruzioni ECO per i cammini di Dyck e di Schröder (sottoparagrafi 2.2.1 e 2.2.2).
Nel paragrafo 2.3 viene introdotto un insieme infinito di regole di successione che definiscono
la sequenza dei numeri ballot. Anche in questo caso se ne dimostra l’equivalenza in maniera
biettiva, a partire da un’interessante costruzione ECO sui cammini di Dyck (sottoparagrafo
2.3.2). Nel paragrafo 2.4 si introducono altri insiemi di regole di successione e se ne dimostra
l’equivalenza calcolandone le funzioni generatrici. Nel paragrafo 3.3 del Capitolo 3, vengono
introdotte le regole di successione negative al fine di definire l’operazione di sottrazione fra
regole di successione e di determinare le regole di successione inverse, rispetto alle operazioni
di prodotto e di semiprodotto introdotte nel paragrafo 3.2. Nel paragrafo 3.5 viene invece
trattato il problema di determinare regole di successione associate a ricorrenze lineari. In
particolare, nel sottoparagrafo 3.5.1 vengono introdotte delle regole di successione che de-
scrivono un’ampia classe di ricorrenze lineari positive non decrescenti. Nel sottoparagrafo
3.5.2 mostriamo come sia possibile descrivere delle ricorrenze lineari per mezzo di regole di
successione negative. In particolare, descriviamo il caso delle ricorrenze lineari a due termini.

Nella seconda parte, è presente il lavoro principale della tesi, cioè lo studio delle relazioni
fra metodo ECO e grammatiche ad oggetti. Il Capitolo 4 è dedicato alla dimostrazione che da
una qualsiasi grammatica ad oggetti completa e non ambigua si può ottenere un ECO-sistema
secondo un parametro lineare. In particolare, nel paragrafo 4.1 diamo le definizioni principali
sulle grammmatiche ad oggetti e forniamo alcuni esempi. Nel paragrafo 4.2 introduciamo
il concetto di parametri lineari e q-lineari su una grammatica ad oggetti. Nel paragrafo 4.3
dimostriamo che per una qualsiasi classe di oggetti O, generata da una grammatica ad oggetti
G, unidimensionale, completa e non ambigua, è sempre possibile determinare un ECO-sistema
che la descriva secondo un parametro lineare. Per dimostrarlo, determiniamo una costruzione
ECO per una particolare classe di alberi, in biiezione con gli alberi di derivazione di G, che
sono a loro volta in biiezione con gli oggetti di O. Più precisamente, nel sottoparagrafo
4.3.3 trattiamo il caso dei parametri lineari uniformi, nel sottoparagrafo 4.3.4 lo estendiamo
al caso dei parameteri lineari. Nel paragrafo 4.4 trattiamo invece il caso più generale delle
grammatiche multidimensionali, fornendo un’altra costruzione ECO per gli alberi associati
ad una grammatica multidimensionale. Nel paragrafo 4.5, presentiamo una costruzione per
la classe degli alberi associata alla grammatica dei poliomini convessi direzionati. Nel Capi-
tolo 5 viene affrontato il caso dei parametri q-lineari per grammatiche unidimensionali. In
particolare, nel paragrafo 5.1 introduciamo il concetto di parametri q-naturali su una gram-
matica G e trasportiamo tali parametri sull’ECO-sistema associato a G. Nel paragrafo 5.2
diamo degli esempi e delle applicazioni. Nel paragrafo 5.3 mostriamo come sia utile avere
una costruzione ECO associata ad una grammatica ad oggetti. In particolare, mostriamo
che è possibile estendere una tale costruzione ECO per una classe di cammini, ad un’ altra
classe più difficile da trattare. Nel Capitolo 6, trattiamo il problema inverso, cioè quello
di ottenere una grammatica a partire da un ECO-sistema. Tale problema viene risolto per
una particolare classe di oggetti: i poliomini convessi. Nel paragrafo 6.1 si determina una
costruzione ECO per questi oggetti, fino ad ora questa classe non era stata enumerata con il
metodo ECO. Nei pararafi 6.3 e 6.4 , si determina una decomposizione algebrica nell’albero
di generazione della regola di successione associata alla costruzione ECO. Questo permette di
ottenere una grammatica per la classe dei poliomini convessi.
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Résumé

La combinatoire est une branche importante des mathématiques, qui étudie les structures
discrètes. Dans ces dernières années la combinatoire a eu un rôle utile dans de nombreuses
disciplines scientifiques, comme l’informatique théorique, la physique statistique et la biologie.
En effet, de nombreux problèmes issus de ces disciplines peuvent être traités en utilisant des
techniques de combinatoire énumérative. Ceci est possible quand ces problèmes se ramènent
à l’étude d’objets combinatoires simples, comme graphes, arbres ou chemins du plan.

Cette thèse se situe dans la domaine de la combinatoire énumérative et bijective: nous
utilisons des bijections et une méthode pour l’Énumération d’Objets Combinatoires (ECO)
pour résoudre des problèmes de combinatoire. En particulier nous étudions en profondeur les
relations entre la méthode ECO et une autre méthode récursive pour l’énumération d’objets
combinatoires, celle des grammaires objets.

La méthode ECO, introduite par Pinzani et al., construit chaque objet en faisant locale-
ment grandir un autre objet plus petit. Souvent l’opérateur ECO, ϑ, fait grandir les objets
d’une classe O avec une certaine régularité. Dans ce cas ϑ peut être facilement décrit à l’aide
d’une règle de succession Ω, qui est un système formé d’un axiome et d’un ensemble de pro-
ductions. L’axiome (a) représente le nombre d’objets produits par l’objet le plus petit au
moyen de l’opérateur ϑ. Une production de Ω est de la forme (k)→ (e1(k))(e2(k)) . . . (ek(k)),
où (k) représente le nombre d’objets O1, . . . , Ok produit à partir de O ∈ O et ei(k) représente
le nombre d’objets qui seront produits à leur tour à partir de Oi, pour i = 1 . . . k. Soit p le
paramètre selon lequel ϑ fait grandir les objets, alors Σ = (O, p, ϑ,Ω) est appelé un ECO-
système.

Les grammaires d’objets, introduites par Fédou et Dutour, décrivent les objets de O au
moyen d’opérations de compositions de ceux-ci, à partir des objets plus petits. Une grammaire
d’objets est représenté par 〈O,E,Φ,O〉, où O est une famille finie de classe d’objets, E est une
famille finie de sous-classe construite à partir des objets plus petit de chaque class appartenant
à O, Φ est l’ensemble des opérations sur les objets et O ∈ O est la classe engendrée par la
grammaire. Une grammaire d’objets est dite complète et non ambigue quand tous les objets
O sont engendrés une et une seule fois.

La thèse commence (Chapitre 1) par une introduction sur les structures qui sont ensuite
utilisées, sur la méthode ECO et sur les grammaires d’objets. Puis elle se divise en deux
parties. La première (Chapitre 2-3) analyse des problèmes sur les règles de succession: le
problème de montrer des règles de succession équivalentes et celui de trouver des règles de
succession qui décrivent une suite définie par une récurrence linéaire donnée. La seconde partie
(Chapitre 4-6) convient le résultat principal de la thèse. En effet on y démontre comment une
classe quelconque d’objets engendrée par une grammaire d’objet complète et non ambigue
peut être décrite par un ECO-système suivant un paramètre linéaire. Ce résultat est enfin
étendu au cas des paramètres q-linéaires naturels pour les grammaires unidimensionelles.

Dans le détail la thèse est organisée comme suit. La première partie est divisée en deux
chapitre. Dans la section 2.1 du chapitre 2, on introduit le problème de l’équivalence entre
règle de succession et on rapelle les principaux résultats existants pour les règles de succession
finies et factorielles. Dans la section 2.2 on démontre l’équivalence de deux ensembles infinis
de règles de succession, liées aux nombres de Catalan et de Schröder. La méthode utilisée
est bijective, c’est-à-dire que l’équivalence de deux règles est montrée en donnant deux con-
structions ECO (une associée à chaque règle) qui décrivent la même classe d’objets selon le
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même paramètres. Dans ce but, on présente deux nouvelles constructions ECO des chemins
de Dyck et de Schröder (sections 2.2.1 et 2.2.2). Dans la section 2.3 est introduit un ensemble
infini de règles de succession qui définissent la suite des nombres de ballot. Dans ce cas aussi
l’équivalence est montrée de manière bijective, à partir d’une intéressante construction ECO
sur les chemins de Dyck (section 2.3.2). À la section 2.4, d’autres ensembles de règles de
succession sont traités en calculant leur série génératrice.

Dans la section 3.3 du chapitre 3, sont introduites les règles de succession négatives
dans le but de définir l’opération de soustraction entre règle de succession et de déterminer
d’inverse d’une règle de succession respectivement aux opérations de produit et de semiproduit
introduites à la section 3.2. Dans la section 3.5 est traité le problème de déterminer des
règles de succession associées à des récurrences linéaires. En particulier, à la section 3.5.1
sont introduites des règles de succession qui décrivent un grande classe de récurrence linéaire
positives croissantes. La section 3.5.2 est consacrée à montrer comment il est possible de
décrire des récurrences linéaire au moyen de règles de succession négative. En particulier, le
cas des récurrences linéaires à deux termes est traité en détail.

Dans la seconde partie est présenté le résultat principal de la thèse, c’est-à-dire l’étude
des relations entre la méthode ECO et les grammaires objets. Le chapitre 4 est dédié à
la démonstration qu’à une quelconque grammaire d’objets complète et non ambigue peut
être associé un ECO-système suivant un paramètre linéaire. En particulier, dans la section
4.1 nous donnons les définitions principales sur les grammaires d’objets ainsi que quelques
exemples et à la section 4.2 sont introduits les concepts de paramètres linéaires et q-linéaires.
Pour démontrer le résultat, nous donnons une construction ECO pour une classe particulière
d’arbres, en bijection avec les arbres de dérivation de G, qui sont à leur tour en bijection
avec les objets de O. Plus précisément, le cas des paramètres uniformes linéaires fait l’objet
de la section 4.3.3, avant d’être étendu à la section 4.3.4 au cas des paramètres linéaires.
Enfin à la section 4.4 est traité le cas plus général des grammaires multidimensionnelles,
qui découle d’une construction ECO pour les arbres associés. Nous présentons ensuite une
construction pour la classe des arbres associés aux polyominos convexes dirigés. Au chapitre
5 on s’occupe des paramètres q-linéaires naturels des grammaires unidimensionnelles. En
particulier à la section 5.1 est introduit le concept de paramètre q-naturel sur une grammaire
G et ces paramètres sont transportés sur l’ECO-système associé à G. À la section 5.2 nous
donnons des exemples et des applications. À la section 5.3 nous illustrons l’utilité d’avoir une
construction ECO associées à une grammaire d’objets en montrant une construction ECO
d’une classe de chemins qui s’étend simplement à une classe plus exotique, plus difficile à
traiter directement avec les grammaires. Au chapitre 6 nous nous intéressons au problème
inverse, c’est-à-dire obtenir une grammaire à partir d’un ECO-système. Ce problème est
résolu pour une classe particulière d’objets, les polyominos convexes. À la section 6.1, on
détermine une construction ECO pour ces objets — jusqu’ici cette classe n’avait pas été
énumérée par la méthode ECO. Aux sections 6.3 et 6.4, on détermine une décomposition
algébrique des arbres de génération de la règle de succession associée. Ceci permet d’obtenir
une grammaire pour la classe des polyominos convexe.
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Chapter 1

Introduction

Combinatorics is an important branch of mathematics concerned in mathematical properties
of discrete structures, as opposed to continuous ones. Structures of this kind often arise in
theoretical computer science, making this field one of the many bridges between computer
science and mathematics. Combinatorics had an increasing growth since the sixties, due
to its relation with computer science and to the major impact that the latter had in our
society. Today combinatorics is an active field with applications and interactions ranging
from analysis of algorithms to statistical physics and bioinformatics for instance. Within
combinatorics, enumerative and bijective combinatorics are more specifically dealing with
the fundamental problems of counting structures in combinatorial classes and explaining the
occurrences of recurring structures.

Enumerative combinatorics is one of the main subfield of combinatorics and is concerned
with counting the number of elements of a finite class in an exact or approximate way. Various
problems arising from different fields can be solved by analyzing them from a combinatorial
point of view. Usually, these problems have the common feature to be represented by simple
objects suitable to enumerative techniques of combinatorics. Given a class O of objects and
a parameter p on this class, we focus on the set On of objects for which the value of the
parameter, called the size, is equal to n, where n ranges over the set N of non negative
integers. The parameter p is discriminating if, for each n ∈ N, the number of objects of On
is finite. Then, we ask for the cardinality an of the set On for each possible n. Enumerative
combinatorics answers to this question.

Only in rare cases the answer will be a completely explicit closed formula for an, involving
only well known functions, and free from summation symbols. However, a recurrence for an
may be given in terms of previously calculated values ak, thereby giving a simple procedure
for calculating an for any n ∈ N. Another approach is based on generating functions: whether
we do not have a simple formula for an, we can hope to get one for the formal power series
f(x) =

∑
n anx

n, which is called the generating function of the class O according to the
parameter p. Notice that the n-th coefficient of the Taylor series of f(x) is just the term an.
In some cases, once that the generating function is known, we can apply standard techniques
in order to obtain the required coefficients an (see for instance Goulden and Jackson [64] and
Graham, Knuth, and Patashnik [65]). Otherwise we can obtain an asymptotic value of the
coefficients through the analysis of the singularities in the generating function (Flajolet and
Odlyzko [56] and Flajolet and Sedgewick [60]).

1
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Methods of enumerations and their applications A first rough and empirical approach
to the enumeration consists in calculating the first terms of an and then try to figure out the
sequence. For instance, one can use the book from Sloane and Plouffe [92, 93] in order to
compare the first numbers of the sequence with some known sequences and try to identify
an. More advanced techniques (Brak and Guttmann [19] and Flajolet et al. [58]) start from
the first terms of the sequence and find an algebraic or differential equation satisfied by the
generating function of the sequence itself. A more common approach consists in looking for
a construction of the studied class of objects and successively translating it into a recursive
relation or an equation, usually called functional equation, satisfied by the generating function
f(x). The approach to enumeration of combinatorial objects by means of generating functions
has been widely used in the last decades (see for instance Goulden and Jackson [64] and Wilf
[100]).

The Schützenberger’s methodology, also called DSV [90] is a method of enumeration by
using algebraic languages. The idea is to estabilish a bijection between the objects and the
words of an algebraic language such that the value of the parameter of the objects corresponds
to the length of the words of the language. If the language is generated by an unambiguous
context-free grammar, then it is possible to translate the productions of the grammar into
a system of functional equations, whose solution is unique and algebraic and it is the gen-
erating function of the language (Schützenberger and Chomsky [24]). A variant of the DSV
methodology are the operator grammars (Cori and Richard [29], Cori [28], and Chottin [25]).
These grammars take in account some cases in which the language encoding the objects is
not algebraic.

The theory of decomposable structure (Flajolet, Salvy, and Zimmermann [57, 59]), de-
scribes recursively the objects in terms of basic operations between them. These operations
are directly translated into operations between the corresponding generating functions, cut-
ting off the passage to words. A nice presentation of this theory appears in the book of
Flajolet and Sedgewick [61]. A variant is the theory of species, introduced by Bergeron, La-
belle and Leroux [11], which also follows the philosophy of decomposable structures. Basing
on the idea of Joyal [69], they define an algebra on species of structures, where the operations
between the species immediately reflect on the generating functions.

Finally, a very convenient formalization of the approach of decomposable structures was
introduced by Dutour [44] with the concept of object grammars, allowing to describe objects
using very general kinds of operations. One can also categorize object grammars as belonging
to the domain of Universal Algebra and Magmas [47, 91].

A significantly different way of recursively describing objects appears in the ECO method-
ology, introduced by Barcucci, Del Lungo, Pergola, and Pinzani [6]. In the ECO method each
object is obtained from a smaller object by making some local expansions. Often these local
expansions are very regular and can be described in a simple way by a succession rule. In
turn a succession rule can be translated into a functional equation for the generating func-
tion. It has been shown in the last years that this method is very effective on large number
of combinatorial structures.

By comparing these two different recursive methods, on the one hand the object grammars,
on the other hand the ECO method, we find that they have at least two important common
applications: bijections and random generation. Indeed both approaches allow us to determine
bijections between classes of different combinatorial objects, either when two object grammars
are isomorphic (Dutour and Fédou [46]) or when two ECO constructions lead to the same
growth mode (see Rinaldi [83]). The general method of random generation introduced by
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Wilf [100] has been applied by Flajolet, Zimmermann, and Van Custem [62] for decomposable
structures and also by Dutour and Fédou in [45] for object grammars. Roughly, the random
generation of an n-sized object is realized by choosing randomly an integer k < n, and then
randomly generating a k-sized and a (n− 1− k)-sized object. On the other hand, a random
ECO object corresponds to a random path in the generating tree, i.e. the tree associated
with the ECO construction (Barcucci et al. [5]).

Another applications of both the ECO and the decomposable structure approach is in
dealing with q-analogs. The notion of q-grammars, introduced by Delest and Fédou in [33],
is based on the idea that coding the objects with the words of an algebraic language provides
a structure on the objects themselves. By fitting the notion of attribute grammars [72],
sometimes it is possible to describe non algebraic equations verified by the generating function
of the class of objects, according to a further parameter represented by the indeterminate q.
The resulting equations are some q-analogs of the original algebraic equations. There is no
general method to solve these q-equations, but some particular cases have been treated (see
for instance Bousquet-Mélou [13], Bousquet-Mélou and Fédou [16], and Prellberg and Brak
[81]).

As already said, a common approach to determine an consists in computing the generating
function f(x). However, determining the generating function it is not always an easy task.
Another approach is to establish a bijection between the studied class of objects and another
one, simpler to count. In order to have consistent enumerative results, the bijection must
preserve the size of the objects. A bijective approach also permits to understand better
certain properties of the studied class and to relate them to the class in bijection with it.
This kind of topics are part of bijective combinatorics.

1.1 Summary of the thesis

As already said, this thesis is about enumerative and bijective combinatorics. The funda-
mental trend of the thesis is the use of bijective transformations and the ECO method to
solve combinatorial problems. After an introduction to the basic objects and methods we
use, comes the first part of the thesis, where various questions about the expressiveness of the
ECO method are adressed. In the second part the relations between object grammars and
ECO method are studied.

A given power series can have representations by completely different succession rules: it
is then of interest to get a combinatorial understanding of the corresponding diverse growth
modes. We use this approach in Chapter 2. There, we give a bijective proof of the equiva-
lence of an infinite set of rules for Ballot numbers by providing different ECO constructions
for the same class of paths and according to the same parameter. At the end of the chapter
we also introduce other infinite sets of equivalent succession rules.

A natural way to understand the expressiveness of succession rules is to consider the
problem of finding combinatorial representations for the coefficients of any rational series,
or equivalently for the sequence defined by any linear recurrence. In Chapter 3 we show
how a large class of linear recurrences with non negative terms can be represented by simple
succession rules. Moreover, we show how any linear recurrence could be treated by means of
signed succession rules, by providing an explicit solution for two terms linear recurrence. In
this case we show that finite signed succession rules are enough to describe any two terms
linear recurrence.
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In Chapter 4 we find the main contribution of this thesis. There we show how it is
possible to give an ECO construction according to a linear parameter for all classes of combi-
natorial objects that can be generated by unambiguous and complete object grammars. This
means that one can work with ECO method without the risk to miss anything that could be
catched by object grammars. In Chapter 5 the result of Chapter 4 is extended to natural
q-parameters on unidimensional grammars.

Since it can also encode non algebraic structures, the ECO method is strictly more ex-
pressive than object grammars for linear parameters. However, one still wishes to get the
grammar representation when possible, in order to exhibit algebraicness. In Chapter 6 we
extend a method of Fédou and Garcia in order to recover, in a quasi-automatic way, a gram-
mar for the class of convex polyominoes from an ECO-system for this class. The point here
is that the grammar for convex polyominoes is significantly more difficult to obtain directly
than the ECO-system.
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1.2 Some combinatorial structures

We start with the definition of some classical combinatorial structures. These structures will
serve us as running examples during the all thesis.

1.2.1 Motzkin paths and their generalization

The word path is a generic term used to denote a sequence of points, s0, s1, . . . sn, in the plane
Z×Z. Paths play a fundamental role in Combinatorics. Goulden and Jackson [64] devoted a
chapter of their book to “Combinatorics of Paths”, including an exhaustive bibliography as
well as enumerative results and bijections with other objects. In [54] Flajolet dealt with con-
tinued fractions from a combinatorial point of view, by giving a combinatorial interpretation
of classical expansions in terms of paths. Roblet also worked on this topic by presenting a
combinatorial theory to study Padé’s approximations [84]. The concept of paths is essential
in the combinatorial theory of orthogonal polynomials developed by Viennot [98]. Paths also
appears in problems arising from Computer Science, such as the evaluation of algorithms on
files (Flajolet et al. [55]).

A couple (si, si+1) is said to be a step of the path and the number of steps is called the
length of the path. We shall concentrate on some families of directed paths that are related
to classical sequences of numbers. Given si = (x, y) then (si, si+1) is:

• an east or horizontal step if si+1 = (x+ 1, y),

• a k-horizontal step if si+1 = (x+ k, y),

• a north-east or a rise step if si+1 = (x+ 1, y + 1),

• a south-east or a fall step if si+1 = (x+ 1, y − 1).

For simplicity, a step (si, si+1) is often represented by a couple (k, l) where k (resp. l) is
the difference between the abscissas (resp. the ordinates) of si+1 and si. Therefore (k, 0)
denotes a k-horizontal step, (1, 1) denotes a rise step, and (−1, 1) denotes a fall step. Most
often we find that it is more convenient to represent a path as a finite sequence, actually as
a concatenation, of steps.

A generalized Motzkin path is a sequence of rise, fall and k-horizontal steps, running from
(0, 0) to (n, 0) and remaining weakly above the x-axis. Generalized Motzkin paths have been
extensively studied (see references in Sulanke [96, 95, 97], and also Pergola and Sulanke [48]).
They include Dyck, Motzkin and Schröder paths, corresponding respectively to the cases
k = 0, k = 1, and k = 2. A path remaining strictly above the x-axis is called elevated. An
elevated Dyck path is shown in Figure 1.1.

A k-coloured generalized Motzkin path is a generalized Motzkin path for which the hor-
izontal steps can have more than one colour. An example of a bicoloured Schröder path is
shown in Figure 1.1. The bicoloured horizontal steps are represented by dashed and solid
horizontal lines. Let P be a coloured generalized Motzkin path. As already said, the length
of P is the abscissa of its end point. A peak (resp. valley) is a couple of consecutive rise and
fall steps (resp. fall and rise). The height of a point of the path is its ordinate. The height
of P is the ordinate of its higgest point. The area of P is usually defined as the sum of the
final heights of its rise and horizontal steps (see Figure 1.2 for an example).
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Dyck path
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rise step fall step

bicoloured Schröder path

Figure 1.1: Two kinds of coloured generalized Motzkin paths.
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Figure 1.2: A Dyck path.

1.2.2 Polyominoes

A cell is defined as a unit square in the plane Z2. A polyomino is a finite connected union
of cells without cut point. We consider the class of polyominoes defined up to translation.
Polyominoes have been often studied in combinatorics. There are various problems related to
them, like the problem of tilings of the plane, or of a rectangle, by polyominoes (Beauquier
and M. Nivat [10]; Conway and Lagarias [27]), or the problem of covering a polyomino by
using rectangles (Chaiken et al. [22]). The term polyomino is usually attributed to Golomb
[63].

The number of cells of a polyomino is called the area, and the perimeter is the number of
edges of its boundary (see Figure 1.3). The height and width of a polyomino are the number
of its rows and columns, respectively. The intersection of a polyomino and an infinite vertical
(resp. horizontal) sequence of connected cells is called a column (resp. row).

The general enumeration problem of polyominoes is difficult to solve and still open,
though some asympotic results are known. For example, the number an of polyominoes
having area n is known up to n = 94 (Redelmeier [82]), and in [70] Klarner and Rivest proved

that limn{an}
1
n = µ, where 3.72 < µ < 4.64. In order to simplify the enumeration problem,

various restricted classes of polyominoes were studied. These subclasses were defined with
respect to certain notions of convexity or preferred directions of growth. A polyomino is called
vertically (resp. horizontally) convex if its intersection with any vertical (resp. horizontal) line
is connected. A polyomino both vertically and horizontally convex is said to be convex. The
semiperimeter of a convex polyomino is equal to the sum of its height and width. In Figure 1.4
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Figure 1.3: A polyomino.

convex polyomino parallelogram polyominodirected and convex polyomino

Figure 1.4: Different kinds of polyominoes.

is shown an example of a convex polyomino. A polyomino is directed if there is a cell, called
the source, from which each other cell of the polyomino can be reached by means of a path
having north steps (0, 1) and east steps (1, 0). A polyomino is said to be directed convex if it
is both convex and directed. A parallelogram polyomino is the region lying between two paths
made of north and east steps, that are disjoint except for their common end points. The class
of parallelogram polyominoes is a subclass of directed convex polyominoes (see Figure 1.4).
The results obtained for convex polyominoes are synthetically listed in the following tables
adapted from [14], and we refer to Bousquet-Mélou [14] for a nice survey on the class of
polyominoes.

1.2.3 Trees

The tree is a widely used structure, it appears in various disciplines and it is the basis for a
great number of applications in Computer Science. Arithmetic expression evaluations is the
classical example to indroduce binary trees in Computer Science. Trees are relevant for the
analysis of algorithms, whether because they implicitly represent the structure of recursive
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Perimeter Area

Parallelogram

perimeter: Levine 59, Polya 69.

perimeter, width and height: Lin
and Chang 88.

perimeter and site perimeter:
Delest et al. 87.

perimeter and different meshes:
Guttmann and Prellberg 93,
Essam 93.

area: Klarner and Rivest 74.

area and width: Bender 74, Delest and
Fédou 93.

area and perimeter: Brak and Gutt-
mann 90.

area and width and height: Ling and
Tzeng 91, Bousquet-Mélou and Vi-
ennot 92, Fédou and Rouillon 95,
Bousquet-Mélou 96, Prellberg and
Brak 94.

area by means of continued fraction:
Flajolet 91, Bousquet-Mélou and
Viennot 92, Roblet 94.

Table 1.1: The main results on parallelogram polyominoes

Perimeter Area

Directed convex
perimeter, width and height:

Lin and Chang 88, Bousquet-
Mélou 92, Bousquet-Mélou and
Guttmann 96.

area and width and height:
Bousquet-Mélou and Viennot
92, Bousquet-Mélou and Fédou 95,
Bousquet-Mélou 96.

area and site perimeter: Dubernard
and Dutour 94.

Convex

perimeter: Delest and Viennot 84,
Kim 88.

perimeter, width and height:
Guttmann and Enting (conjec-
ture) 88, Lin and Chang 88,
Gessel 90, Bousquet-Mélou and
Guttmann 95.

area and width and height:
Bousquet-Mélou and Fédou 95,
Bousquet-Mélou 96.

symmetric classes: Leroux and Ro-
bitaille 96.

Table 1.2: The main results on directed convex and convex polyominoes
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Figure 1.5: A complete binary tree.

programs or because they are explicitly involved in many basic algorithms. Since trees are
widely studied, the literature on this subject is enormous (see for instance Knuth [71] and
Goulden and Jackson [64]). For a survey of the main results on the enumeration of trees we
refer to Flajolet and Sedgewick [60], where we can also find bibliographical references on this
subject.

A plane tree, or equivalently an unlabeled ordered tree and briefly hereafter simply, a tree, is
defined recursively: a tree consists of a particular node r, called the root, and of an ordered set
of non-empty trees, A1, . . . , Ak. A plane tree can thus be represented as a list (r,A1, . . . , Ak),
where A1, . . . , Ak are themselves trees. The roots of the subtrees A1, . . . , Ak are said to be
sons of r, and r is said to be their father; k is called the degree of r. The nodes without sons
are called leaves. Let us consider a tree represented in the cartesian plane so that the root
has ordinate 0 and each son has ordinate lower than that of its father. The level of a node of
the tree is the opposite of its ordinate. The length of an edge is the difference between the
level of the son and that of its father. If each edge has length 1, the level of a node becomes
the number of edges between the root and the node. The depth of a tree is the maximum
level of its nodes and the internal path length of a tree is the sum of the levels of its nodes. In
agreement with these definitions, we remark that when illustrating a tree, the convention is
to draw the tree with the root at the top (or at the left) and its sons located below (located
to the right).

A Schröder tree is a plane tree without nodes of degree 1. As a particular case, the class
of complete binary trees, i.e. trees with nodes of degree 0 or 2, is a subclass of Schröder trees.
A complete binary tree is represented in Figure 1.5.
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1.3 ECO method and succession rules

The ECO method, introduced by Barcucci, Del Lungo, Pergola, and Pinzani [6], is a method
for Enumerating some classes of Combinatorial Objects. It provides a recursive construction
of the objects according to their size, where by “size” we mean the value of a finite parameter
defined on the objects. In the ECO method, each object is obtained from a smaller object
by making some local expansions. If the recursive construction presents a certain regularity,
then it can be encoded in a formal system called succession rule. Succession rules represent
the intermediate step allowing to describe in a synthetic way the growth mode of the class
of objects. Then, from a succession rule associated with an ECO construction for a class of
objects, we can often obtain the generating function of the objects themselves. In conclusion,
ECO method is a useful tool for the enumeration of combinatorial objects. In Pergola’s PhD
thesis [78] there are some important enumerative results obtained by means of ECO method.
In [51], Ferrari presents an approach to the ECO method from an algebraic point of view.

1.3.1 ECO operators and generating trees

Let O be a class of combinatorial objects and let p : O → N be a finite parameter on O, that
is to say, a parameter p such that the set On = {O ∈ O : p(O) = n} of objects of size n is
finite. Let ϑ : O → 2O be an operator such that ϑ(On) ⊆ 2On+1 . The operator ϑ describes
how small objects produce larger ones. (For S a set, 2S stands for the set of subsets of S.)

In order for the operator to define objects in a non-ambiguous way we introduce the
following restriction.

Proposition 1.3.1. If ϑ satisfies, for n ≥ 0,

1. for each O′ ∈ On+, there exists O ∈ On such that O′ ∈ ϑ(O), and

2. for every O,O′ ∈ On, ϑ(O) ∩ ϑ(O′) = ∅ whenever O 6= O′,

then the family of sets Fn+ = {ϑ(O) : O ∈ On} is a partition of On+.

Following the definition in [6], an operator ϑ, satisfying conditions 1 and 2 above, is said
to be an ECO operator. Thus an ECO operator generates all the objects of O in such a way
that each object O′ ∈ On+1 is obtained from a unique O ∈ On. In fact we shall consider only
ECO operators that make local expansions on the so-called active sites of the object. The
construction performed by ϑ can be described by a generating tree, i.e., a rooted tree whose
nodes correspond to the objects of O. The root, placed at level 0 of the tree, is the object
with minimum size, m. Objects with the same size lie at the same level and the sons of an
object O are those produced by O through ϑ (see Barcucci et al. [6] and Chung et al. [26]
for further informations on generating trees). Let {|On|}n be the sequence determined by the
number of objects with size n. Then fO(x) =

∑
n≥m |On|xn is its generating function.

Example 1.3.1. Let D be the class of Dyck paths and Dn be the subclass of Dyck paths with
semi-length n. For a Dyck path D ∈ D, we denote by `d(D) the last sequence of fall steps
of D, said also last descent of D. We define the set of active sites of D as the set P(D) of
points on the last decent of D (or more precisely initial and final points of the steps of `d(D)).
Let us define an operator from D to 2D as follows: the image ϑ(D) of a Dyck path D ∈ Dn is
the set of paths of Dn+1 that can be obtained by adding a peak at one of the active sites of D.
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Let us check that ϑ is an ECO operator, that is, ϑ generates all the Dyck paths, and in
a unique way. Indeed, given a non-empty Dyck path D ′ we recover the unique Dyck path D
such that D′ ∈ ϑ(D) by erasing the last peak of D′. In Figure 1.6 are represented the first
levels of the generating tree of ϑ, where the circled points represent the active sites.

Figure 1.6: Classic generating tree for Dyck paths. (Paths at level 4 are displayed horizontally
to save space.)

Example 1.3.2. Let S be the class of Schröder paths and let S ∈ S. Let `d(S) be the last
sequence of fall and horizontal steps of S. The set of active sites of S is defined as the set
P(D) of points on `d(S) (or more precisely initial or final points of the steps of `d(S)). We
define an ECO operator ϑ from Sn, the class of Schröder paths with semi-length n, to the
power set 2Sn+1 of Sn+1: the image ϑ(S) of a Schröder path S is the set of paths obtained
by simultaneously inserting a rise step on any active site and a fall step at the end of S, or
by inserting an horizontal step at the end of S. Again the fact that ϑ is an ECO operator is
immediate: given S ′, the path S such that S ′ ∈ ϑ(S) is obtained by removing the last step of
S′ and, if it is a fall step, the last rise step. In Figure 1.7 are represented the first levels of
the generating tree of ϑ.

Figure 1.7: Classic generating tree for Schröder paths.

1.3.2 Succession rules

Succession rules were first introduced by Chung, Graham, Hoggat, and Kleimann [26] for
studying Baxter permutations. Such formal systems were later used by West [99], and by
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Figure 1.8: Generating tree for the Catalan succession rule.

Dulucq, Gire, and Guibert [43, 42, 41] for the enumeration of permutations with forbidden
sequences. In Rinaldi’s PhD thesis [83] we can find a complete survey on succession rules.

A succession rule Ω is a system ((a),P), consisting of an axiom (a) and a set P of pro-
ductions or rewriting rules defined on a set of labels M ⊂ N+:

Ω =

{
(a)
(k) (e1(k))(e2(k)) . . . (ek(k)), for all k ∈M,

(1.1)

where a ∈M is a fixed constant and the ei are functions M →M .

One of the main properties of a succession rule is the consistency principle, i.e. each label
(k) must produce exactly k elements. A succession rule Ω induces, and is suitably represented
by, a generating tree whose root is labeled by the axiom (a), and a node labeled (k) produces
at the next level k sons labeled by (e1(k)), . . . , (ek(k)) respectively (which in turn will produce
respectively e1(k), . . . , ek(k) sons, etc.). The succession rule produces a sequence {fn}n of
positive integers, where fn is the number of nodes at level n of the generating tree and its
generating function is denoted fΩ(x) =

∑
n≥0 fnx

n.
Often an ECO operator ϑ can be encoded in a succession rule of the form (1.1), meaning

that the object with minimum size has a sons and the k objects O ′
1, . . . , O

′
k, produced by an

object O are such that O′
i will in turn produce ei(k) sons by ϑ, i.e. |ϑ(O′

i)| = ei(k), 1 ≤ i ≤ k.
In that case there is an isomorphism between the generating tree of the ECO operator and
that of the corresponding succession rule. Consequently we have fO(x) = xmfΩ(x), that
reduces to fO(x) = fΩ(x) when m = 0.

Let ϑ be an ECO operator for O according to p. Assume there is a succession rule Ωϑ

associated with ϑ. The quadruple Σ = (O, p, ϑ,Ωϑ) is called an ECO-system.

Example 1.3.3. Let us consider again the classic ECO construction for Dyck paths, defined
in Example 1.3.1. Let us suppose that k is the number of active sites of a path D. If the
operator ϑ inserts a peak in the first active site (starting from the bottom) of D, then it obtains
a new path D′ with |P(D′)| = 2 active sites. On the other hand, if ϑ inserts a peak in the k-th
active site of D, then it obtains a path D ′ with |P(D′)| = k + 1 active sites (see Figure 1.6).
In general, a path with k active sites produces, through ϑ, k paths, respectively with 2, 3, . . . ,
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Figure 1.9: Generating tree for the Schröder succession rule.

k+ 1 active sites. Thus the rule associated with the classic ECO construction for Dyck paths
is the classic rule for Catalan numbers:

Γ =

{
(1)
(k) (2) . . . (k)(k + 1)

In Figure 1.8 are represented the first levels of the generating tree of Γ. This tree is clearly
isomorphic to the generating tree of Figure 1.6.

Example 1.3.4. Let us consider the classic ECO construction for Schröder paths, defined in
Example 1.3.2. Let us take a Schröder path S with k − 1 active sites. If the operator ϑ adds
the rise step in the first active site of S, then it produces a path with two active sites. On the
other hand, if ϑ adds the rise step in the (k − 1)-th active site of S, then it obtains a path
with k active sites. In general, a path with k− 1 active sites produces k− 1 paths, respectively
with 2, 3, . . . k active sites, and a further path with k active sites, since ϑ can also inserts
an horizontal step in the first active site of S (see Figure 1.7). We remark that, in this case,
a path with k − 1 active sites produces k new paths. Therefore the rule associated with ϑ is
the classic rule for Schröder numbers:

Υ =

{
(2)
(k) (3) . . . (k)(k + 1)2,

where the power notation is used to express repetitions, that is (k+1)2 stands for (k+1)(k+1).
The first levels of the generating tree of Υ are shown in Figure 1.9.

1.3.3 The generating function of a succession rule

Now, in order to illustrate the use of the ECO method for enumeration, and to introduce the
kernel method, we compute the generating functions of Γ and Υ. Let

fΓ(x) =
∑

n≥0

fnx
n
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be the generating function of the succession rule Γ, where fn is the number of nodes at level
n of the generating tree. Let fn,k be the number of nodes at level n having label (k). Then
we define

fΓ(x, y) =
∑

n≥0,k≥1

fn,kx
nyk.

Consequently fΓ(x, 1) = fΓ(x). From the succession rule Γ, we deduce that

fΓ(x, y) = x0y + x
∑

n≥0,k≥1

fn,kx
n(y2 + y3 + . . .+ yk+1). (1.2)

Indeed, the fn,k nodes lying at level n and having label k, produce kfn,k nodes one level
below, among which fn,k are labeled j, for j = 2 . . . k + 1. From equation (1.2) we obtain

fΓ(x, y) = y + x
∑

n≥0,k≥1

fn,kx
n y

2 − yk+2

1− y ,

which leads to the following functional equation:

fΓ(x, y)

(
1 + x

y2

1− y

)
= y +

y2

1− yfΓ(x, 1). (1.3)

An essential ingredient to solve equation (1.3) and in general, to solve equations of that
form, is the so-called kernel method. This method has been around since the 70’s and it has
been used in various combinatorial problems. For instance, we can find it in the work of
Cori and Richard [29] on planar graphs, or in the Knuth’s book [71] concerning the art of
computer programming. An application of the kernel method in probabilities is in the paper
of Fayolle et Iasnogorodski [49]. Recent applications and formalizations of this method can
be found in the work of Banderier et al. [1], Banderier and Flajolet [2], Bousquet-Mélou [15],
and Bousquet-Mélou and Petkovšek [18].

The kernel method consists in coupling the variables x and y in order to cancel the left-
hand side of the functional equation (1.3) in a way that the coefficient of fΓ(x, y), called just
“the kernel”, is 0. One way to do this is to take y to be a solution y(x) of the kernel equation

1 + x y2

1−y = 0. If y(x) can be substituted into the right-hand side of the functional equation,
then the value of fΓ(x, 1) is obtained in the right-hand side.

Here the numerator of the kernel is a polynomial of degree 2, thus it has two roots:

y0(x) = 1−
√

1−4x
2x = 1 + x+ 2x2 +O(x3)

y1(x) = 1+
√

1−4x
2x = x−1 − 1− x− 2x3 +O(x3).

Observe that only y0(x) can be substituted in equation (1.3). Indeed, because of the negative
exponent of the first term of y1(x), fΓ(x, y1(x)) is not a well-defined power series. Thus, we

substitute y0(x) in the equation y + x y2

1−yfΓ(x, 1) = 0, and we obtain

fΓ(x) = fΓ(x, 1) =
y0(x)− 1

xy0(x)
=

1−
√

1− 4x

2x
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The generating function fΓ(x) defines the sequence 1, 1, 2, 5, 14, 42 of Catalan numbers
(sequence A000108 in “The encyclopedia of integer sequences” [92]).

The calculation of fΥ(x) is similar to that of fΓ(x). By maintaining the notations above
we have

fΥ(x, y) = x0y2 + x
∑

n≥0,k≥1

fn,kx
n(y3 + y4 + . . .+ yk+1 + yk+1), (1.4)

from which we obtain

fΥ(x, y) = x0y2 + x
∑

n≥0,k≥1

fn,kx
n y

3 − yk+2

1− y + x
∑

n≥0,k≥1

fn,kx
nyk+1.

After some steps we obtain

fΥ(x, y)

(
1 + x

y2

1− y − xy
)

= y2 + x
y3

1− yfΥ(x, 1)

By applying the kernel method, we obtain

y0(x)
2 + x

y0(x)
3

1− y0(x)
fΥ(x, 1) = 0,

where y0(x) = 1+x−
√

1−6x+x2

4x . Consequently,

fΓ(x) =
1− x−

√
1− 6x+ x2

2x
,

defining the sequence 1, 2, 6, 22, 90, 394, . . . of Schröder numbers (sequence A006318 in [92]).

A succession rule is called rational, algebraic or trascendental according to its generating
function type. In [1], Banderier et al. investigated the link between the structural properties
of succession rules and the rationality, algebraicity, or trascendence of their corresponding
generating functions. In particular, by using some criteria, they established the kind of
generating function associated with several classes of succession rules.

We define a succession rule Ω to be finite if the number of labels in the productions is
finite, that is, when |M | <∞, in the notation of (1.1). In this particular case, the generating
function is rational, as shown in [1], and sometimes has an interpretation as a regular language
or other combinatorial structures (see Ferrari et al. [53], Rinaldi [83]).

A classical example of a finite succession rule is the one defining the Fibonacci numbers,
1, 1, 2, 3, 5, 8, 13, . . . (sequence A000045 in [92])

ΩF =





(1)
(1) ; (2)
(2) ; (1)(2),

(1.5)



16

whose generating function is x
1−x−x2 .

A succession rule has a factorial form, if a finite modification of the set {1, 2, . . . , k} is
reachable from k. More formally, a factorial succession rule has the form:

Ω =

{
(a)
(k) (r0)(r0 + 1) . . . (k − c− 1)(k + d1)(k + d2) . . . (k + dm), k ≥ r0, (1.6)

where a ≥ r0 ≥ 1, c ≥ 0 and the di are constants with −c ≤ d1 ≤ d2 ≤ . . . ≤ dm, and
the consistency principle of succession rules is satisfied imposing that r0 + c = m. The classic
rule for Catalan numbers of Example 1.3.1 is factorial. In [1] Banderier et al. formalize the
kernel method, and then apply it in order to find a solution to the functional equation arising
from a factorial succession rule. Their main result states that a factorial succession rule has
an algebraic generating function.

1.4 Object grammars

As already explained, object grammars, introduced by Dutour in [44], illustrate another re-
cursive method for enumerating combinatorial objects, namely the approach of decomposable
structures. An object grammar describes a class of combinatorial objects by means of termi-
nal objects and operations applied to the objects, resulting in a tree-like decomposition. We
give here a short introduction to object grammar, a more detailed account of which is given
in Chapter 4

Definition 1.4.1. Let O be a finite family of classes of objects. An object operation in O is
a mapping φ : O1× . . .×Ok → O, where O,Oi ∈ O, i = 1, . . . , k. The domain and codomain
of an object operation are respectively denoted as dom and cod.

An object operation describes a way of building recursively an object of O from k objects
belonging to O1, . . . ,Ok.

Definition 1.4.2. An object grammar is a quadruple 〈O,E,Φ,A〉 where :

- O is a finite family of classes of objects.

- E = {EO}O∈O
is a finite family of finite subclasses of the classes belonging to O. The

objects of E are called terminal objects.

- Φ is a finite set of object operations in O.

- A is a fixed class of O, called the axiom of the grammar.

The dimension of an object grammar is the cardinality of O.

Definition 1.4.3. Let G = 〈O,E,Φ,A〉 be an object grammar and let O ∈ O. A derivation
tree of G on O is an ordered labelled tree T , recursively described as follows :

- if T is reduced to a leaf then the label is a terminal object belonging to O,
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, φ2

Figure 1.10: The object operation φ2 of the grammar GD.

φ2

φ2

φ2 φ2

φ2

Figure 1.11: A derivation tree from the grammar GD and the corresponding Dyck path.

- if the root of T has k sons then its label is an object operation φ ∈ Φ,

φ : O1 × . . .×Ok → O,

where Oi ∈ O and the i-th son of the root is the root of a derivation tree on the class
Oi, i = 1 . . . k.

Definition 1.4.4. The valuation ev(T ) of a derivation tree T is an object defined as follows :

- if T is a single node labelled E, then ev(T ) = E,

- otherwise, if the root of T is labelled φ ∈ Φ and its k subtrees are T1, . . . , Tk, then
ev(T ) = φ(ev(T1), . . . , ev(Tk)).

Definition 1.4.5. Let G = 〈O,E,Φ,A〉 be an object grammar. An object O ∈ O is said to
be generated in G by O if there is a derivation tree T on O such that ev(T ) = O.

The class of objects generated in G by A is said to be the class generated by G.

Example 1.4.1. Let D be the class of Dyck paths. The mapping φ2 depicted in Figure 1.10
is a binary object operation on the class D of Dyck paths: it takes a pair of Dyck paths as its
argument, adds a rise (resp. fall) step at the beginning (resp. end) of the first path and then
appends the second path. The class D is obviously generated by the object grammar

GD = 〈D, {{.}}, {φ2}〉

where the terminal object is the Dyck path of zero length, commonly represented as a dot.
Each Dyck path is then univocally associated with a derivation tree of GD (see for instance
Figure 1.11). Introducing the generating function fD(x) =

∑
n≥0 fnx

n where fn is the
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number of Dyck path of semi length n, the object grammar immediately translates into an
algebraic equation

fD(x) = 1 + xfD(x)2,

from which the generating function fD(x) = 1−
√

1−4x
2x is easily recovered.
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ECO-systems and succession rules
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Chapter 2

The equivalence problem for

succession rules

The notion of succession rule provides a powerful tool for the enumeration of many classes
of combinatorial objects. Therefore we are interested in problems related to such formal
systems. An important one is the equivalence problem. The equivalence problem is that of
determining if two different succession rules are equivalent. Two rules Ω1 and Ω2 are said to
be equivalent, if they define the same numerical sequence, i.e.,

Ω1
∼= Ω2 ⇐⇒ fΩ1(x) = fΩ2(x) .

For instance, as shown by Barcucci et al. in [7, 8], the following rules Υ′, Υ′′, and Υ′′′ are
equivalent to the classic rule Υ for Schröder numbers (see Example 1.3.2), whose generating
tree is represented in Figure 1.9.

Υ =

{
(2)
(k) (3) . . . (k)(k + 1)2,

Υ′ =

{
(2)
(2k) (2)(4)2 . . . (2k)2(2k + 2),

Υ′′ =





(2)
(2) (3)(3)
(2k − 1) (3)2(5)2 . . . (2k − 1)2(2k + 1),

Υ′′′ =

{
(2)

(2k) ; (2)2
k−1

(4)2
k−2

(8)2
k−3

. . . (2k−1)2(2k)(2k+1).

In general, as mentioned recently by M. Robson [85], the equivalence problem is not
decidable. However there are classes of rules for which the problem is indeed decidable.
In particular, the problem turns out to be decidable for the classes of finite and factorial
succession rules, because the corresponding generating functions are respectively rational
(see Rozenberg and Salomaa [86] or Banderier et al. [1]) and algebraic (Banderier et al. [1]).
As illustrated by these two classes, a direct way of proving the equivalence of two rules is
to calculate their generating functions. However, determining the generating function of a

21
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given succession rule is not always an easy task. Therefore, some recent papers have focused
on the development of algebraic tools in order to study enumerative properties of succession
rules, without computing the corresponding generating functions, by using a linear operator
approach (Ferrari et al. [53]), or by using production matrices (Deutsch [36]). These methods
allow to produce easily new equivalent bijective rules.

In this chapter we consider a different approach, that is the problem of showing the
equivalence of two succession rules in a bijective way. The main advantage of this approach
is that it gives a combinatorial understanding of the corresponding diverse growth modes.
In other terms, two different rules can be proved equivalent by providing a combinatorial
proof that they describe two different growth modes of a same class with respect to the same
parameter. Such a bijective approach could also be useful when dealing with succession rules
for which it is difficult to determine the generating functions. The main part of this chapter
is devoted to show the equivalence of some sets of succession rules in this way, that is by
providing different ECO constructions for the same combinatorial class according to the same
parameter. At the end of the chapter we give other examples of equivalent succession rules,
by proving their equivalence by means of generating functions.

The chapter is organized as follows. In Section 2.1 we recall the results on the equiva-
lence problem for finite and factorial rules. We first show how the result for finite rules can
be easily deduced from the language theory of D0L-systems. Then we recall the result on
factorial succession rules and an extension of these. In Section 2.2 we mainly introduce new
succession rules for Catalan and Schröder numbers and we show their equivalence by using
ECO method. Finally we transport the ECO operators along some known bijections between
paths and trees. In Section 2.3 we introduce an infinite set of rules for Ballot numbers and we
show their equivalence by using the ECO method. Finally, in Section 2.4 we introduce other
infinite sets of equivalent rules and we prove their equivalence by computing their generating
functions. An account of the results of this chapter can be found in [20, 21].

2.1 Some decidable classes

2.1.1 Finite rules

The easy case of finite succession rules stems from the theory of D0L systems. We quickly give
some notions concerning these systems. We refer to the books by Salomaa [87], Rozenberg
and Salomaa [86], and Salomaa and Soittola [88] for a complete survey on this topic.

Let Σ = {a1, . . . , ak} an alphabet with k letters. The length of a word w ∈ Σ∗ is denoted
|w|. The empty word is denoted ε. A Deterministic 0-context L-system, shortly a D0L system,
is a triple

G = (Σ, h, w0),

where h is an endomorphism defined on the monoid Σ∗ with concatenation, and w0 ∈ Σ∗ is
called the axiom. The endomorphism h is nonerasing if h(ai) 6= ε for i ∈ {1, . . . , k}. The
language of G is defined by

L(G) = {hi(w0) : i ≥ 0}.
The function fG : N → N defined by fG(n) = |hn(w0)|, n ≥ 0, is the growth function of G,
and the sequence |hn(w0)|, n ≥ 0, is its growth sequence.

A D0L system is said to be propagating or, shortly, a PD0L system if h is nonerasing.
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The growth matrix M associated to a D0L system G is defined by

M [i, j] = |h(aj)|ai ,

where |h(aj)|ai is the number of occurrences of the letter ai in h(aj). Let

π = (|w0|a1 , . . . |w0|ak) and e = (1, . . . , 1)t

where t stands for transpose. By induction on n we have that

fG(n) = πMne. (2.1)

Let fG(x) be the generating function of the growth sequence of G

fG(x) =
∞∑

n=0

fG(n)xn.

In view of equation (2.1), fG(x) can be expressed as the quotient of two polynomials, Q(x)
and R(x), where

Q(x) = π
(
det(I −Mx)(I −Mx)−1

)
e

R(x) = det(I −Mx).
(2.2)

Let G = (Σ, h, w0) and G′ = (Σ′, g, u0) be two D0L systems and fG(x) = Q(x)/R(x) (resp.
fG′(x) = Q′(x)/R′(x)) be the generating function of G (resp. G′). Now, G and G′ are
growth equivalent if they have the same generating function, which amounts to check if two
polynomials are equal

Q(x)R′(x) and Q′(x)R(x).

However, the computation of the polynomials can be avoided, by checking the equality of the
first few terms of L(G) and L(G′). In fact one can see (Theorem 3.3 in [86]) that G and G′

have the same generating function if and only if

|hi(w0)| = |gi(u0)| for 0 ≤ i ≤ k + k′ − 1,

where and k ( resp. k′ ) is the cardinality of Σ (resp. Σ′).

We remark that any finite succession rule Ω can be viewed as a particular PD0L system
where the alphabet Σ is the set of labels of Ω, h is defined by the productions of Ω, and
w0 ∈ Σ.

For instance, the rule (1.5) for Fibonacci numbers, defines a PD0L system F , where
Σ = {1, 2}, w0 = 1, and

h(1) = 2
h(2) = 12

M =

[
0 1

1 1

]
.

The words in the language of F are

1, 2, 12, 212, 12212, 21212212, 1221221212212, . . . ,
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and its growth sequence is obtained from the matrix associated to G by computing the
generating function (2.2)

fG(x) = (1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + 13x6 + 21x7 +O
(
x8
)
).

From the previous assertions we have the following

Theorem 2.1.1. The equivalence problem is decidable for the class of finite succession rules.
More precisely two finite succession rules, Ω1 and Ω2, are equivalent if the first k1 + k2 terms
of the two sequences they define coincide.

For example, the finite rules

Ω1 =





(2)
(2) ; (2)(3)
(3) ; (2)(3)(3),

Ω2 =





(2)
(1) ; (2)
(2) ; (1)(4)
(4) ; (1)(2)(4)(4),

(2.3)

both define odd index Fibonacci numbers, 1, 2, 5, 13, 34, 89, . . . (sequence M1439 in [92]).
Their equivalence can be verified by comparing the first 5 terms of the defined sequences.

2.1.2 Factorial rules

As already mentioned, Banderier et al. [1] proved the following result:

Theorem 2.1.2 (Banderier et al.). Factorial succession rules have algebraic generating
functions.

This result has been extended by Fédou and Garcia:

Theorem 2.1.3 (Fédou-Garcia). Succession rules of the form

(k) (1)αk−1 . . . (k − 1)α1(k)λ0 . . . (k + p)λp

have an algebraic generating function when the sequence (αi) is rational.

Corollary 2.1.1. The equivalence problem is decidable for the rules of the previous kind.

Proof. A classical result on the equality of algebraic generating functions in several
commutative variables, shows that the equality is decidable (see Theorem IV. 5.1 by Salomaa
and Soittola [88]) �

2.2 A proof of equivalence by ECO method

In this section we first present an infinite family of equivalent succession rules parameterized
for a positive integer α. Then, we prove the equivalence thanks to a new ECO construction for
Dyck paths. The construction is then extended to colored Schröder paths. In order to explore
the properties of these new growth operators, we translate them in terms of binary trees and
Schröder trees. These latter trees are enumerated by little Schröder numbers (Schröder [89])
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according to the number of their leaves (Penaud et al. [77]).
The two families of rules that we will prove equivalent are, for any α ∈ N+,

Ωα =





(α)
(α) ; (α+ 1)α

(k) ; (α+ 1)(α + 2) . . . (k − 1)(k)(k + 1)α,

and

Ω′
α =





(α)
(α) ; (α)α−1(2α)
(2kα) ; (α)kα(2α)α−1(4α)α(6α)α . . . (2(k − 1)α)α(2kα)α(2(k + 1)α).

The rule Ωα is related to the classic rules for Catalan and Schröder numbers associated
with the classic ECO constructions described respectively in Examples 1.3.1 and 1.3.2. Indeed
Ω1 = Γ and Ω2 = Υ. Thus, in order to prove the equivalence, we start by presenting two ECO
operators constructing the classes of Dyck and Schröder paths according to the specializations
α = 1 and α = 2 of Ω′

α:

Ω′
1 =





(1)

(1) ; (2)

(2k) ; (1)k(4)(6) . . . (2(k − 1))(2k)(2(k + 1))

Ω′
2 =





(2)

(2) ; (2)(4)

(4k) ; (2)2k(4)(8)2(12)2 . . . (4(k − 1))2(4k)2(4(k + 1)).

2.2.1 A new ECO construction for Dyck paths.

Let D be a Dyck path, it factors uniquely in blocks of elevated Dyck paths

D = D1D2 . . . Dm.

D is said of even type (respectively odd type) if m = 2j for some j (resp. m = 2j + 1). Let
P0(D) be the set of points of the last descent `d(D) of D, excepting the point at level 0. The
set of Dyck paths having semi-length n is denoted by Dn, and the operator

ϑD : Dn −→ 2Dn+1

is defined as follows:

D1. If D is of even type, then ϑD(D) contains a single Dyck path, obtained by gluing a peak
of height 1 at the end of D (see Figure 2.1(D1)). This corresponds to the production

(1) ; (2).

(Recall that the label is the number of objects generated at next level.)
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D2. If D is of odd type, then ϑD(D) is the set of Dyck paths obtained from D by performing
on any A ∈ P0(D) one of the following actions:

a) insert a peak;

b) let A′ be the leftmost point such that A′A is a Dyck path; remove the sub-path
A′A from D, elevate it by 1, and glue it at the end of D (see Figure 2.1(D2)).

For a Dyck path with k active sites, the number of objects produced is 2k, and more
precisely these actions of ϑD correspond to the production

(2k) ; (1)k(4)(6) . . . (2(k − 1))(2k)(2(k + 1)).

As one can check, this is an ECO construction of Dyck paths. Moreover, it yields the succes-
sion rule Ω′

1, thus proving its equivalence with Ω1.

D1.

D2.

1
2

2

2

1

1(a)

(b)

(a)

(b)

Figure 2.1: The construction for Dyck paths according to the rule Ω′
1.

2.2.2 Extension to Schröder and colored Schröder paths.

We give now a similar construction for Schröder paths. Each Schröder path S factors uniquely,

S = S1S2 . . . Sm,

where Si, 1 ≤ i ≤ m, is either elevated or a horizontal step on the x-axis. The path S is said
of even type (respectively odd type) if the number of elevated factors following the rightmost
horizontal step on the x-axis is even (resp. odd). The last descent `d(S) of S is the last run
of fall steps, and P0(S) is the set of its points, excepting the last point.

The set of Schröder paths having semi-length n is denoted Sn, and the operator

ϑS : Sn −→ 2Sn+1

is defined by the following rules:
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1
2

(c) 2

(b)

(a) 2

(a)

(a)

(a)

(b)

2

2

1(c)

1

1

1

S2.

S1.

Figure 2.2: The construction for Schröder paths corresponding to the rule Ω ′
2.

S1. If S is of even type, then ϑS(S) contains two Schröder paths, obtained respectively by
gluing at the end of S, either a peak of height 1, resulting in an odd type path, or a
horizontal step, resulting in an even type path (Figure 2.2(S1)). This corresponds to
the production (2) ; (2)(4).

S2. If S is of odd type, then ϑS(S) is the set of paths obtained by performing one of the
following actions on any point A ∈ P0(S) (Figure 2.2(S2)):

a) insert a peak of height 1 or a horizontal step;

b) let A′ be the leftmost point such that A′A is a Schröder path. Then cut A′A,
elevate it by 1, and glue it at the end of S;

c) let A′′ be the first left point such that A′′A is a Schröder path; if A′′A is not empty,
then replace it by a horizontal step and glue A′′A at the end of S; if A′′A is empty
then glue a horizontal step at the end of S. In this way we obtain an even type
path.

With k − 1 the number of active sites, this corresponds to the production

(4k) ; (2)2k(4)(8)2(12)2 . . . (4(k − 1))2(4k)2(4(k + 1)).

One can check that this operator is indeed an ECO operator for Schröder paths and this
proves the equivalence of Ω′

2 and Ω2.
The previous construction for Schröder paths, can be easily extended to Schröder α-colored

paths by using α-colored horizontal steps. It leads to the succession rule Ω ′
α+1, with α ≥ 2.

For instance, when horizontal steps of two colors are used, we obtain Schröder bi-colored
paths associated to the succession rule Ω′

3.
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Moreover, if we use α-colored horizontal steps in the classic ECO construction for Schröder
paths we obtain α-colored Schröder paths to which the rule Ωα+1, α ≥ 2, is associated. So
we have proved the equivalence between Ωα and Ω′

α in a combinatorial way.

2.2.3 Transport of the new ECO constructions on trees

In this subsection we transport the operators ϑD and ϑS along a bijection. Then we provide
a description of the new operators that is independent from the bijection. Let B and T
respectively the classes of complete binary trees and Schröder trees (see Chapter 1). The
nodes of a plane tree T can be totally ordered by means of the prefix traversal, and indexed
increasingly by the integers, so that, given two nodes xi and xj,

xi < xj ⇐⇒ i < j.

Accordingly, the maximum of two nodes is defined by

max(xi, xj) = xj ⇐⇒ i < j.

Also, the total order allows to define notions like first, last, successor, predecessor, etc.,
consequently, for every node p of T , we denote by (see Figures 2.4 and 2.6 ):

- `i(T ), `l(T ), `s(T ) the last, respectively, internal node (i.e. not a leaf), leaf, internal
sibling;

- f(p) the set of leaves following p;

- father(p) the father of p;

- succ(p) the successor of p;

A common abuse of notation identifies a tree with the name of its root, and, consequently
subtrees as nodes. The total order extends to the the class F of forests, whose objects are
lists of trees, in the obvious way, making all the above definitions relevant for forests as well.

For convenience we denote the tree consisting of a single point by “•”, and define the
“tree” and “raise” constructors

tree, raise : F −→ T
respectively, by

tree(T1, T2, . . . , Tm) = (•, T1, T2, . . . , Tm),

and (see Figure 2.3),

raise(T1, T2, . . . , Tm) = tree(T1, T2, . . . , Tm, •).

We use the short hand notation subs(T1, T2) to indicate the substitution of a subtree T1

in place of a subtree T2 (T2 ← T1). Moreover, we say that T is of even type (resp. odd type)
if the length of its rightmost branch is even (resp. odd).

From now on, we consider the total order on two subclasses of plane trees, namely, the
class B of complete binary trees and the class T of Schröder trees. The parameter p considered
on these two classes of combinatorial objects is the number of leaves.
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 ............

raise

 ............

1 2 3 kT T T T 1 2 3 kT T T T

Figure 2.3: The raise constructor.
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Figure 2.4: A complete binary tree B in B7, and the corresponding Dyck path.

There is a well-known bijection (see Figure 2.4) between Dyck paths and complete binary
trees,

Ψ : D −→ B
(for instance, see the book from Stanley [94]). Let x and x denote respectively rise and fall
steps. A recursive definition of Ψ is then:

- the empty Dyck path corresponds to a leaf.

- a Dyck path of the form xDxD′ with D and D′ in D corresponds to the tree with a
root, and left and right subtrees Ψ(D) and Ψ(D ′) respectively.

For D ∈ D and B = Ψ(D), define

P(B) = f(`i(B)) \ {`l(B)},

and observe that the number of elevated Dyck paths in D corresponds to the length of the
right branch of B. Moreover, we have the underlying set bijection on nodes

f(`i(B)) = Ψ(`d(D));

P(B) = Ψ(P0(D)).

These observations lead to an almost direct translation of the operator ϑD. Indeed, let Bn be
the set of binary trees having n leaves, and let B ∈ Bn, then the operator

ϑB : Bn −→ 2Bn+1

is defined as follows (see Figure 2.5):

B1. if B is of even type then add two sons to `l(B), i.e. ϑB(B) = subs(raise(•), `l(B));
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B2. if B is of odd type then ϑB(B) is the set of complete binary trees obtained by performing
on any leaf A ∈ P(B) one of the following actions:

a) subs(raise(•), A);

b) let A′ be the largest complete binary subtree of B such that A = `l(A
′); then, do

subs(raise(A′), `l(B)) and subs(•, A′).

2

(b)

1

1 1 (a) 2 (b) 2(a)

B1. B2.

Figure 2.5: The construction for complete binary trees.

Clearly, ϑD and ϑB share the same succession rule Ω′
1.

We now turn to the case of Schröder trees. Let S ′ be the class of Schröder paths without
horizontal steps at level 0, and let ϑS′ be the restriction of ϑS to S ′. That is

ϑS′(S ′n) = ϑS(Sn) ∩ S ′n+1 , ∀n ≥ 1.

As for Dyck paths, we show how to transport the operator ϑS′ along the bijection (Penaud
et al. [77])

Ψ′ : S ′ −→ T .
This bijection (see Figure 2.6) provides a simple interpretation of the required parameters.
Indeed, a rise (resp. fall) step of S corresponds to a leftmost (resp. rightmost) sibling of T ,
and the horizontal steps of S correspond to the internal siblings of T , that is, those siblings
strictly between the leftmost one and the rightmost one. The last run of fall steps `d(S)
corresponds to, either the leaves following the last internal node `i(T ), or, the last internal
sibling `s(T ) and its successors, whichever occurs the last. Therefore, define

z = max(succ(`i(T )), `s(T )),

(z = 14 in Figure 2.6), and set

P(T ) = Ψ′(P(S)) = {z} ∪ f(z) \ {`l(T )}.

Observe that this generalizes the corresponding definition in the class B.

Let Tn be the set of Schröder trees having n-leaves. The operator

ϑT : Tn −→ 2Tn+1

is defined as follows (see Figure 2.7):
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Figure 2.6: A Schröder tree and its corresponding path.

ST1. If T is of even type, then ϑT (T ) = subs(raise(•), `l(T )) (see Figure 2.7(ST1)).

ST2. If T is of odd type, then ϑT (T ) is obtained by performing on any point A ∈ P(T ) one
of the the following actions (see Figure 2.7(ST2)):

a) subs(raise(•), A), or add a left brother to succ(A);

b) let A′ be the largest Schröder sub-forest of T , such that A = `l(A
′); then, do

subs(raise(A′), `l(T )) and subs(•, A′);

c) if A 6= z, let A′′ be the tree having father(A) for root; then, do
subs(A′′, `l(T )), subs(•, A′′), and add a right brother to A′′ .

A careful comparison between the constructions associated to the operators ϑT and ϑS
shows some differences. Indeed, since we are concerned with the restriction ϑS′ , it was neces-
sary to avoid the cases that generate a Schröder path with a horizontal step at level 0. This
occurs precisely when the node z is treated. To conclude, we believe that the problem of char-
acterizing the natural bijections between objects (allowing the translation of ECO-operators)
is a problem that is worth investigating.

2.3 An infinite set of rules for Ballot numbers

In this section we give an infinite set of rules defining Catalan numbers. This set, denoted by
Γ1
α,β, depends on two parameters α and β. The rule Γ1

2,0, obtained for α = 2 and β = 0, is
equal to the rule Ω′

1 introduced in Section 2.2. Therefore, generalizing the ECO construction
encoded by Ω′

1 (see Subsection 2.2.1), we provide a bijective proof that Γ1
α,β is a set of

equivalent rules defining Catalan numbers. Finally, we generalize our result to the set of
Ballot numbers.

For k, n ∈ N, let an,k, be the set of Ballot numbers, defined by the recurrence,

a1,1 = 1, a1,k = 0, for k ≥ 2

an+1,1 =
∑

j≥1 an,j, an+1,k =
∑

j≥k−1 an,j, for k ≥ 2.
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(a) 1
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Figure 2.7: The construction for Schröder trees.

They can conveniently be displayed in a triangular array, sometimes known as the Catalan
triangle shown in Table 2.1. For any positive integer h, the classic rule defining the sequence
in the h-th column is the following:

Γh =

{
(h)
(k) ; (2)(3) . . . (k)(k + 1).

(2.4)

Please notice that for h = 1, we have the classic rule defining the Catalan numbers.
Let h, α ∈ N+, and β ∈ N. We first define the following set of rules depending on h, α,

and β:

Γhα,β =





(h)
(1) ; (2)
(2) ; (2)(3)
. . . . . .
(α+ β − 1) ; (2)(3) . . . (α+ β)
(αk + β) ; (1)k . . . (α− 1)k(α+ 1) . . . (α+ β)

(2α+ β) . . . ((k + 1)α + β), k ≥ 1.

(2.5)

If h = 1 we have
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1 2 3 4 5 6 7 . . .

1 1 . . .
2 1 1 . . .
3 2 2 1 . . .
4 5 5 3 1 . . .
5 14 14 9 4 1 . . .
6 42 42 28 14 5 1 . . .
7 132 132 90 48 20 6 1 . . .

...
...

...
...

...
...

...
. . .

Table 2.1: The Catalan triangle.

Γ1
α,β =





(1)
(1) ; (2)
(2) ; (2)(3)
. . . . . .
(α+ β − 1) ; (2)(3) . . . (α+ β)
(αk + β) ; (1)k . . . (α− 1)k(α+ 1) . . . (α+ β)

(2α+ β) . . . ((k + 1)α + β), k ≥ 1.

(2.6)

In Subsection 2.3.2 we prove, bijectively, the equivalence of Γ1 and Γ1
α,β, for any α ∈ N+

and β ∈ N. Therefore Γ1
α,β can be viewed as a generalization of Γ1 where the labels have

been linearly combined according to the parameters α and β. Moreover we prove that, for
h ≤ α+ β, the rule Γhα,β is equivalent to the rule Γh. As a consequence, we obtain that Γhα,β
defines the numbers {an,h : n ≥ 0}, for any α and β such that h ≤ α+ β. Thus we have
an infinite set of succession rules defining Ballot numbers. For instance, the following rules
define Catalan numbers:

Γ1
2,0 =





(1)
(1) ; (2)
(2k) ; (1)k(4)(6) . . . (2k)(2k + 2);

(2.7)

Γ1
3,1 =





(1)
(1) ; (2)
(2) ; (2)(3)
(3) ; (2)(3)(4)
(3k + 1) ; (1)k(2)k(4)(7) . . . (3k + 1)(3k + 4).

(2.8)
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2.3.1 Some further notations on Dyck paths.

Recall that x and x denote respectively a rise and a fall step. The set D of Dyck paths can
be seen as the subset of Σ∗ = {x,x}∗ generated by the grammar

D := ε+ xDxD, (2.9)

and we refer to paths as words, in which the notions of prefix, suffix have the usual meaning.
The height of a point is denoted h(P ). An elevated Dyck path D is represented as D = xD ′x
with D′ ∈ D, and we denote the stripping operation by

D′ = Top(D).

Given two points P ′, P of a Dyck path D, the factor starting at P ′ and ending at P of
the corresponding Dyck word is denoted D[P ′

x, Px]. By convention, D[i, j] = ε if i ≥ j. The
insertion of a word w in D at position i is defined by

insert(D,w, i) = D[0, i] · w ·D[i, 2n] .

The last sequence of fall steps `d(D) satisfies `d(D) = xk for some k ≥ 1, and P(D) is the set
of its points. Finally, |D| denotes the length of the word (number of steps of the path). From
the grammar (2.9), one can easily deduce the properties summarized in the next statement.

Proposition 2.3.1. Every non empty Dyck D = uxxk, k ≥ 1, satisfies the conditions
(a) ∃m, D = D1D2 . . . Dm where ∀i,Di is elevated;
(b) D′′ = uxk−1 ∈ D is such that D = insert(D′′,xx, |D′′| − (k − 1));

2.3.2 An ECO operator for D
We define an ECO operator ϑ : Dn → 2Dn+1 generating Dyck paths according to their semi-
length. The rule associated with ϑ is Γ1

α,β. The operator is defined separately on three

subclasses D0, D1, and D2, such that {D0,D1,D2} is a partition of D. The description is
inductive, we give directly the class to which belong the paths produced at one step. This is
possible because the class of a path depends only on the way it is produced by ϑ.

The empty path ε is put in the class D0, and the construction for each class is as follows.

[D ∈ D0] /*See Figure 2.8 for an example with α = 3, β = 2, and |P(D)| = 4.*/
In this class ϑ(D) is the set of paths produced by the classic construction:
• for any point P ∈ P(D) do

Dh(P ) ← insert(D,xx, Px);
if h(P ) < α+ β − 2 then Dh(P ) ∈ D0 else Dh(P ) ∈ D1. /*classifying*/

Remark. For each path in the class D0 we will have

D ∈ D0 =⇒ h(`d(D)) < α+ β − 1.

[D ∈ D1] /* See Figure 2.9 for an example with α = 3, β = 2.*/
In this case there are two types of productions:
• for any point P ∈ P(D) such that h(P ) ≥ α− 1 do
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Dh(P ) ← insert(D,xx, Px);
if h(P ) ≥ α+ β − 2 then Dh(P ) ∈ D1 else Dh(P ) ∈ D0.

• for any pair P,Q ∈ P(D) such that h(P ) ≥ α+ β − 1 and

0 ≤ h(Q) ≤ α− 2 do

let P ′ be the leftmost point of D such that P ′P ∈ D;
/* then D = uD[P ′

x, Px]v with uv ∈ D; */
Dh(P ),h(Q) ← insert(uv,xD[P ′

x, Px]x, Qx); Dh(P ),h(Q) ∈ D2;
rank(Dh(P ),h(Q))← h(Q); /* ranking*/

Remark. Observe that the rank is defined only for paths in D2, and is equal to the
height of the insertion point.

[
D ∈ D2

]
/* See Figure 2.10 for an example with α = 3, β = 0. These paths have a rank.*/

In this case the classic construction applies again, but only to lower points:
• for any point P ∈ P(D) such that h(P ) ≤ rank(D) do

Dh(P ) ← insert(D,xx, Px);
if rank(D) < α+ β − 2 then Dh(P ) ∈ D0 else Dh(P ) ∈ D1.

In order to prove that the operator ϑ is well defined it is convenient to have a direct way
to know the class of a Dyck path and, for paths of D2, to know their rank. In order to do this
we introduce an evaluation V al : D → {0, 1, 2} ×N. The first component stands for the class
of the path and the second, which is used only for paths of D2, gives the corresponding rank.

An evaluation for Dyck paths

For l, i, n ∈ N, a Dyck path at level i is the image of an ordinary Dyck path (at level 0) under
the translation (0, 0) 7→ (l, i), running from (l, i) to (l + 2n, i) and remaining weakly above
the line y = i.

Let D(i) be the set of Dyck paths at level i, and D = {⋃D(i) : i ∈ N}. By Proposition 2.3.1
(a), each path D(i) ∈ D(i) admits a unique decomposition in terms of elevated paths at level
i,

D(i) = D(i, 1)D(i, 2) . . . D(i,m),

where D(i, j) denotes the j-th component, and #(D(i)) = m denotes the number of com-
ponents. In this decomposition, D′′(i) denotes the rightmost factor having height less than
α + β − i − 1, while D′(i) is the factor on the right of D′′(i). The evaluation is defined by
Val(D) = Val(D, 0), where Val(D, i) is defined by the following algorithm, where the variables
are defined by the notations above.

Algorithm Val(D, i) ;
D − D′′ is the path obtained by removing D′′ from D; Val(D, i)[1] refers to the first
component of the evaluation.

if D = ε then return (0, i)

elseif #(D′) = 0 then there are three cases

if #(D′′) > 1 then return (0, i)



36

ϑ

(5)

(4)

(3)

(2)

(4)

D0

D0

D
1

D0

D0

Figure 2.8: The operator ϑ applied to a path in D0. The belonging class is represented at the
bottom of each path.
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(2)
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(5)

(D,0)
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D1

(D,1)
2

(D,1)
2

Figure 2.9: The operator ϑ applied to a path in D1.
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(2)

ϑ

(D,1)2

h

 (3)

 (2)
D0

D1

Figure 2.10: The operator ϑ applied to a path in D2.

α + β −  1

B

D(i,1)

 A

D’’(i) = D(i,2)D(i,3)

C

levels  

D(i) D’(i) = D(i,4) D(i,5)

i  + 1
i

Top(D(i , 4 ))

D

Figure 2.11: Decomposition of a Dyck path at level i and notations.

elseif Val(D −D′′, i)[1] = 1 then return (2, i)

else return (0, i)

else let D′ =
∏m
j=1D

′(j); we have four cases:

if Val(
∏m−1
j=1 D′(j), i)[1] = 1 then return (2, i)

elseif i < α− 2 then return Val(Top(D ′
m), i+ 1))

elseif |P(D′
m)| < α+ β − i then return (0, i)

else return (1, i).

end Val(D, i).

An example of a computation of the evaluation of a Dyck path We provide a
computation of the evaluation applied to the path in Figure 2.12 in the case where α = 3 and
β = 2. Let D(0, 1), D(0, 2), and D(0, 3), for simplicity D(1), D(2), and D(3), be the three
components of the path D. In order to give a clear explanation of the calculus of Val(D, 0)
we first compute the values Val(D(1), 0) and Val(D(2), 0). The calculus of these values is
necessary to obtain the final result.
Val(D(1),0): this returns the value Val(Top(D(1)), 1), since #(D ′(1)) 6= 0, #(D(1)) = 1,
and i = 0 < 3− 2.

Val(Top(D(1)),1): this implies the calculus of Val(Top(D(1))(1), 1).

Val(Top(D(1))(1),1): this returns the value (1,1), since
#((Top(D(1))(1))=1, i = 1 = 3− 2, and |P((Top(D(1))(1))| = = 4 = 3 + 2− 1.
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α = 3   β = 2

Figure 2.12: A Dyck path D with Val(D) = (2, 0).

Then Val(Top(D(1)), 1) returns (2,1).

Consequently Val(D(1), 0) returns (2,1).
—————————————————————————————————————-
Val(D(2),0): this is equal to compute Val(Top(D(2)), 1), since #(D ′(2)) 6= 0, #(D(2)) = 1,
and i = 0 < 3− 2.

Val(Top(D(2)),1): this implies the calculus of

Val(Top(D(2))(1) Top(D(2))(2), 1).

Val(Top(D(2))(1) Top(D(2))(2),1): this implies the calculus of Val(Top(D(2))(1), 1).

Val(Top(D(2))(1),1): this returns the value (1,1), since
#((Top(D(2))(1))=1, i = 1 = 3−2, and |P((Top(D(2))(1))| = = 4 = 3+2−1.

Then Val(Top(D(2))(1) Top(D(2))(2), 1) returns the value (2,1).

Then Val(Top(D(2)), 1) returns (1,1).

Consequently Val(D(2), 0) returns (1,1).
—————————————————————————————————————
Val(D,0): this implies to compute Val(D(1)D(2), 0), since #(D ′) 6= 0, #(D) = 3, and
i = 0 < 3− 2.

Val(D(1)D(2),0): this implies to compute Val(D(1), 0)

Val(D(1),0): it returns the value (2,1).

Then Val(D(1)D(2), 0) returns the value Val(D(2), 0), that is (1,1).

Consequently Val(D, 0) returns (2,0).

Finally, we constructed the class of Dyck paths according to the rule Γ1
α,β. Thus, we can

enunciate the following.
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Proposition 2.3.2. Let p be the semi-length of a Dyck path, then

Σ = (D, p, ϑ,Γ1
α,β)

is an ECO-system.

Proof. We need to prove that the described construction generates all the Dyck paths i)
and that we have a partition ii). This is achieved for both conditions by induction, according
to the inductive definition of ϑ.

i) For any D′ ∈ Dn+1 there exists D ∈ Dn, such that D′ ∈ ϑ(D):

- if D′ ∈ D0 ∪ D1, then D′ = uxxk and Proposition 2.3.1(b) identifies the last peak
of D

′

to be removed, i.e.
D = uxk−1 ∈ Dn ,

such that D′ = insert(D,xx, |D| − (k − 1)).

- if D′ ∈ D2, from the evaluation we have

Val(D′) = (2, |v|), and D′ = uD′′v ,

where D′′ 6= ε, and #(D′′) ≥ 2. Then, Proposition 2.3.1(a) provides the factoriza-
tion

D′′ = D′′
1 . . . D

′′
m−1D

′′
m ,

where D′′
m = xTop(D′′

m)x. Let Px be the position of the last peak of D′′
m−1. Then,

D = insert(uD′′
1 . . . D

′′
m−1v,Top(D′′

m), Px) .

ii) Let D and D
′ ∈ Dn, then ϑ(D) ∩ ϑ(D

′

) = ∅; when D and D′ are such that ϑ performs
the insertion of xx in their last descent, the result follows from the fact that, for each
P ∈ P(D) and for each P ′ ∈ P(D′), we have

insert(D,xx, Px) = insert(D′,xx, P ′
x) =⇒ D = D′.

When ϑ(D), ϑ(D′) ∈ D2, we have two cases.

- Val(ϑ(D))[2] 6= Val(ϑ(D′))[2] =⇒ ϑ(D) 6= ϑ(D′).

- Val(ϑ(D))[2] = Val(ϑ(D′))[2]; if ϑ(D) = ϑ(D′) then the construction i) above shows
that D = D′.

�

We are now in a position to state our main result.

Proposition 2.3.3. Let α ∈ N+ and β ∈ N, then Γ1
α,β
∼= Γ1.

Proof. Both rules describe the class of Dyck paths according to the same parameter. �

Corollary 2.3.1. Let h, α ∈ N+, β ∈ N and h ≤ α+ β. We have Γhα,β
∼= Γh.

Proof. It is a direct consequence of Proposition 2.3.3. Indeed, the rules Γhα,β and Γh both
enumerate the class of Dyck paths beginning with h rise steps. �
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2.4 Other examples.

We give now some other examples of infinite sets of equivalent succession rules. In practice,
the productions of these succession rules can be distinguished into two different types:

- the set of productions that behave like the original rule Ω;
- the set of productions that are obtained by linearly combining the productions of Ω.

Example 2.4.1. An infinite set of rules defining Motzkin numbers.

The sequence of Motzkin numbers, 1, 1, 2, 4, 9, 21, 51, 127, . . . (sequence A001006 in [92])
is defined by the classic rule

∆ =

{
(1)
(k) ; (1)(2) . . . (k − 1)(k + 1).

Let M(x) be the generating function of the rule ∆. Recall that M(x) satisfies the relation
M(x) = 1+xM(x)+x2M(x)2. Let us moreover denote Mj(x) the generating function of the
rule with the same production as ∆ and axiom (j). Then Mj(x) = M(x)(1 + xM(x))j−1.

An infinite class of succession rules can be derived from ∆, still defining Motzkin numbers





(1)
(1) (2)
(2) (1)(3)
(3) (1)(2)(4)
...
(α+ β) (1)(2) . . . (α+ β − 1)(α+ β + 1)
(αk + β + 1)  (1)k(2)k . . . (α− 1)k(1)(α+ 1)(α+ 2) . . . (α+ β)

(α+ β + 1)(2α+ β + 1) . . . ((k − 1)α+ β + 1)((k + 1)α+ β + 1).

This rule can be re-written in a simpler way as

∆α,β =





(1)
(k) (1)(2) . . . (k − 1)(k + 1) k ≤ α+ β
(αk + β + 1) (1)k(2)k . . . (α− 1)k(1)(α+ 1)(α+ 2) . . . (α+ β)

(α+ β + 1)(2α+ β + 1) . . . ((k − 1)α+ β + 1)((k + 1)α+ β + 1).

We prove that ∆α,β is equivalent to ∆ by computing its generating function, f∆α,β
. Let

fj(x) be the generating function of the rule having the same productions as ∆α,β and axiom
(j), then f∆α,β

= f1(x). By descending in the generating tree of ∆α,β up to the first occurrence
of the label α+ β + 1, we obtain the following system of equations:
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f1(x) = 1 + xf2(x)

f2(x) = 1 + xf1(x) + xf3(x)
...
fα+β(x) = 1 + xf1(x) + xf2(x) + . . . + xfα+β−1(x) + xfα+β+1(x)

fα+β+1(x) = M(x) + (M(x)− 1)(f1(x) + f2(x) + f3(x) + . . . + fα−1(x))+

+xM(x)f1(x) + xM(x)(fα+1(x) + fα+2(x) + . . .+ fα+β(x)),

(2.10)

where the last equation, for the generating function of the rule




(α+ β + 1)
(αk + β + 1)  (1)k(2)k . . . (α− 1)k(1)(α+ 1)(α+ 2) . . . (α+ β)

(α+ β + 1)(2α+ β + 1) . . . ((k − 1)α+ β + 1)((k + 1)α+ β + 1),

is obtained by decomposing its generating tree. Indeed, descending in this generating tree
using only labels of the form (iα+ β + 1), for i ∈ {1, 2, . . . , k− 1, k + 1}, we obtain the same
generating tree as for the rule ∆. In particular, the term M(x) is the generating function of
nodes reached by a path in the generating trees having all nodes of the form (iα + β + 1),
for i ∈ {1, 2, . . . , k − 1, k + 1}. But a path in the generating tree can also reach a first
label not of the form (iα + β + 1). We consider the different kind of subtrees that can be
attached there. The term xM(x)f1(x) is the generating function of subtrees having the first
node labeled (1), and the term xM(x)(fα+1(x) + fα+2(x) + . . . + fα+β(x)) is the generating
function of the subtrees with first node labeled (i), for i ∈ {α+1, . . . , α+β}. Finally the term
(M(x) − 1)(f1(x) + f2(x) + f3(x) + . . . + fα−1(x)) is the generating function of the subtrees
with first node labeled (i)k, for i ∈ {1, . . . , α−1}: this follows from the fact that a node with
label αi+ β produces i labels of the same form at the next level.

Now, we need to prove that f1(x) = M(x). Observe that it is sufficient to check that the
last equation of (2.10) is satisfied upon setting fj = Mj for j ∈ {1, . . . , α + β + 1}, because
the other α + β equation of (2.10) are identical to the equations induced by ∆ for the Mj ,
j = 1, . . . , α + β. This verification is easy using the explicit values of the Mj(x) in terms of
M(x) and the relation satisfied by this series.

Example 2.4.2. An infinite set of rules for the number of m-ary trees.

It is common knowledge that for any m ≥ 2, the number of m-ary trees having n nodes is

1

(m− 1)n+ 1

(
mn

n

)
.

A succession rule defining this sequence is determined in by Barcucci et al. [5]:

Ωm =

{
(m)
(k) ; (m)(m+ 1) . . . (k +m− 1)
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Let T (x) be the generating function of the rule Ωm. The series T (x) counts m-ary trees
according to the number of non root nodes and satisfies T (x) = (1+xT (x))m. Let us moreover
denote Tj(x) the generating function of the rule with the same production as Ωm and axiom
(j). Then Tj(x) = (1 + xT (x))j .
A class of succession rules equivalent to Ωm is given by

Ωm
α,β





(m)
(k) (m)(m+ 1) . . . (k +m− 1) k 6∈ {αt+ β | t ∈ N+}
(αk + β) (1)k(2)k . . . (α− 1)k(α+m− 1)(α +m) . . . (α+ β +m− 2)

(αm+ β)(α(m + 1) + β) . . . (α(k +m− 1) + β)

with α ≥ 1, β ≥ 0, and α + β ≥ m. We remark that the specialization m = 2, again yields
the set of rules (2.5) defining Γ2

α,β.

Let fj(x) be the generating function of the rule having the same productions as Ωm
α,β and

axiom (j). Let fα+β be the generating function of the rule





(α+ β)
(αk + β) (1)k(2)k . . . (α − 1)k(α+m− 1)(α+m) . . . (α + β +m− 2)

(αm+ β)(α(m + 1) + β) . . . (α(k +m− 1) + β).

Then using a similar decomposition as previously we have

fα+β(x) = (1 + xT (x)) + xT (x)(f1(x) + f2(x) + . . .+ fα−1(x))+

+x(1 + xT (x))(fα+m−1(x) + fα+m(x) + . . .+ fα+β+m−2(x)).
(2.11)

Indeed, the term (1 + xT (x)) is the generating function of the nodes reached by a path
with all labels of the form (iα + β), for i ∈ {1} ∪ {m,m + 1, . . . ,m + k − 1}. The subtrees
attached to these nodes and having a root labeled (i), for i ∈ {α+m− 1, . . . , α+β+m− 2}
gives the term x(1 + xT (x))(fα+m−1(x) + fα+m(x) + . . . + fα+β+m−2(x)). Finally, using the
same trick as in the previous example the term xT (x)(f1(x) + f2(x) + f3(x) + . . .+ fα−1(x))
corresponds to subtrees with root labeled (i)k, for i ∈ {1, . . . , α− 1}.

Now, we need to prove that fm(x) = T (x). As in the previous example, it is sufficient to
check that the equation for fα+β is satisfied upon setting fj = Tj for j ∈ {1, 2, . . . , α+β+m−2}
∪{α+ β}. This can be verified by using the explicit values of the Tj(x) in terms of T (x) and
the relation T (x) = (1 + xT (x))m.



Chapter 3

Rational succession rules

A natural problem is to find a catalogue of operations on succession rules and their effects on
the generating functions, as shown by the work of Banderier et al. in [1]. Pergola, Pinzani
and Rinaldi in [80], describe several operations on succession rules, such as sum, product or
star operations and ask for subtraction and inversion operations on succession rules. Another
similar approach is used by Merlini, Sprugnoli and Verri [75] in the context of Riordan arrays.
More precisely, they use the equivalence between the notion of Riordan arrays and a particular
subset of marked generating trees, to define an algebra on a subset of marked succession
rules and their inverses with respect to Riordan array operations. Corteel [30] also defines
some eco-systèmes signés for exponential generating functions. In this chapter we introduce
operations on succession rules and we show how signed succession rules can be used to obtain
an interpretation of the subtraction and inversion of succession rules.

We then turn to the main subject of the chapter, that is the problem of finding a combina-
torial interpretation to coefficients of rational functions, or equivalently to sequences defined
by linear recurrences. Other attempts were made to solve this problem using for instance
rational languages. We show here that simple succession rules are enough to define a large
class of such sequences with non decreasing positive values (Theorem 3.5.1). Moreover, we
show how arbitrary sequences could be dealt with thanks to the concept of signed succession
rules, by providing an explicit solution in the case of arbitrary linear recurrences with two
terms (Theorem 3.5.2).

The chapter is organised as follows. We start by the definition of pseudo and colored
succession rules, that are introduced mostly for notational convenience. In Section 3.2 we
recall the usual operations on succession rules. Then we use the signed succession rules
described in Section 3.3 in order to define the subtraction operation and also the product
and semi-product inversion in Section 3.4. In Section 3.5 we deal with linear recurrences,
first using standard rules for a class of positive recurrences. Then we show how to deal with
arbitrary two term linear recurrences using signed succession rules. An account of some these
results can be found in [37, 39].

3.1 Pseudo and colored succession rules

In this context it is convenient to use a more general type of rules that do not necessarily
satisfy the consistency principle: a pseudo succession rule is a system consisting of an axiom
and a set of productions, denoted by

43
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Ω =

{
(a)
(k) (e1(k))(e2(k)) . . . (ej(k)(k)), k ∈M.

(3.1)

where M is the set of labels, a ∈M , j : M → N+ and the ei are functions M →M .

A succession rule Ω is said to be colored if there are at least two labels having the same
value but different productions. More precisely, let C = {a, b, c, d, . . . } be a finite set, called
the set of colors of the rule. In this context the labels have the form (k)i, i ∈ C, thus the rule
is specified by a colored axiom (a)i and a set of productions having the form:

(k)i  (e1,i(k))c1(k,i) (e2,i(k))c2(k,i) . . . (ek,i(k))ck(k,i) ,

where the ci are functions N+ × C → C that indicate the color of produced objects.

If C is made of two elements, say C = {a, b}, then we have

(k)a  (e1,a(k))c1(k,a) (e2,a(k))c2(k,a) . . . (ek,a(k))ck(k,a) ,

(k)b  (e1,b(k))c1(k,b) (e2,b(k))c2(k,b) . . . (ek,b(k))ck(k,b) ,

where ci : N+ × {a, b} → {a, b}. In such a case, for simplicity, we represent any node of
the form (j)a (resp. (j)b) simply by (j)(resp. (j)).

Example 3.1.1. The following 3-colored finite rule defines the numbers 1, 2, 5, 11, 28, 68,
. . . , 




(2)a

(2)a  (2)b(3)c

(3)a  (2)b(2)b(3)a

(2)b  (2)b(3)b

(3)b  (2)b(3)a(3)b

(3)c  (2)a(2)a(2)b,

and its generating function is 1−x−x2−x4

1−3x+4x3−4x4+4x5 .

Example 3.1.2. 



(1)

(1) (1)

(1) (1)(2)

(k) (1)(2) . . . (k + 1),
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is a colored pseudo succession rule for Catalan numbers and it is equivalent to Γ (see Subsec-
tion 1.3.2). For sake of clarity, the production involving (1) is written explicitly.

3.2 Some operations on succession rules

We first recall from Pergola, Pinzani and Rinaldi [80] the basic operations ⊕, ⊗ and ∗ on
succession rules. For rules that come from an ECO-system, these operations correspond to
natural operation on the classes of combinatorial objects: disjoint union, cartesian product,
and sequences. Moreover we give an operation, the semi-product, corresponding to alternating
sequences of objects of two types.

Let Ω and Ω′ be the following succession rules,

Ω =





(a)
(a) (b1)(b2) . . . (ba)
(k) (e1(k)) . . . (ek(k))

(3.2)

Ω′ =





(a′)
(a′) (b′1)(b

′
2) . . . (b

′
a′)

(k) (e′1(k)) . . . (e
′
k(k)),

(3.3)

where the productions for the axiom are written explicitly.

Definition 3.2.1. The operators ⊕, ⊗ and ∗ are defined by

Ω⊕ Ω′ =





(̃1)

(̃1)  (b1)(b2) . . . (ba)(b′1)(b
′
2) . . . (b

′
a′)

(k)  (e1(k))(e2(k)) . . . (ek(k))

(k)  (e′1(k))(e
′
2(k)) . . . (e

′
k(k))

Ω⊗ Ω′ =





(̃1)

(̃1)  (b1)(b2) . . . (ba)(b
′
1)(b

′
2) . . . (b

′
a′)

(k)  (e1(k))(e2(k)) . . . (ek(k))(b
′
1)(b

′
2) . . . (b

′
a′)

(k)  (e′1(k))(e
′
2(k)) . . . (e

′
k(k))

Ω∗ =





(̃a)

(̃a)  (b1)(b2) . . . (ba)
(k)  (e1(k))(e2(k)) . . . (ek(k))(b1)(b2) . . . (ba).

Similarly, the operation � is defined by

Ω�Ω′ =





(̃1)

(̃1)  (b1)(b2) . . . (ba)(b′1)(b
′
2) . . . (b

′
a′)

(k)  (e1(k))(e2(k)) . . . (ek(k))(b
′
1)(b

′
2) . . . (b

′
a′)

(k)  (e′1(k))(e
′
2(k)) . . . (e

′
k(k))(b1)(b2) . . . (ba).
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e1e2 . . . ek b1b2 . . . ba

k

e1 e2 ek

k

b1 b2 ba

a

b1 b2 ba

a
?

Figure 3.1: Star operation.

Remark 3.2.1. The rules Ω⊕Ω′, Ω⊗Ω′, Ω∗, and Ω�Ω′ are colored pseudo-succession rules
and can be easily transformed into equivalent colored succession rules by shifting the labels.

The operations ⊕, ⊗, ?, and� are easily translated into the algebra of generating functions
as follows.

Proposition 3.2.1. Given two succession rules Ω and Ω′, the generating functions of Ω⊕Ω′,
Ω⊗ Ω′, Ω∗, and Ω� Ω′ satisfy:

fΩ⊕Ω′(x) = fΩ(x) + fΩ′(x)− 1 ,

fΩ⊗Ω′(x) = fΩ(x)fΩ′(x) ,

fΩ∗(x) =
1

1− (fΩ(x)− 1)
,

fΩ�Ω′(x) =
fΩ(x)fΩ′(x)

fΩ(x) + fΩ′(x)− fΩ(x)fΩ′(x)
.

Example 3.2.1. Recall that a Dyck path is a sequence of rise and fall steps, running from
(0, 0) to (2n, 0), and remaining weakly above the x-axis. A Grand Dyck path is a sequence of
rise and fall steps, running from (0, 0) to (2n, 0). There is a natural bijection between D�D
and the class of Grand Dyck paths. Let Γ be the classical succession rule for D (see Example
1.3.1), then the succession rule for the class of Grand Dyck paths is,

Γ� Γ =





(̃2)

(̃2)  (3)(3)
(k)  (3) . . . (k + 1)(3)

(k)  (3) . . . (k + 1)(3)

and is clearly equivalent to the following one,
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ek

b1

a

ba

k

e1

b1 ba

k

b
′

1 b
′

a′

k

e
′

ke
′

1

b
′

1

a
′

b
′

a′

k

e
′

1 . . . e
′

kb
′

1 . . . b
′

a′ b1 . . . bae1 . . . ek

e1

Figure 3.2: The alternating product � of two succession rules.

Figure 3.3: Semi-product of two Dyck paths.

Γ� Γ ≡
{

(2)
(k) (3)(3) . . . (k + 1).

The ECO-construction for the semi-product of two Dyck paths, and also for Grand Dyck paths,

is shown in Figure 3.3. The generating function for Dyck paths is f(x) = 1−
√

1−4x
2x , and we

obtain the well known generating function of Grand Dyck paths 1√
1−4x

.

3.3 Signed succession rules

Let us consider signed succession rules, that is succession rules having positive or negative
labels. By interpreting negative labels in the generating tree as negative objects which can
annihilate some equivalent positive objects, we get signed succession rules as defined in [76, 75].
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This concept allows us to interpret the inverse of a rule with respect to the Cauchy product
of succession rules, and gives a combinatorial interpretation for the generating function 1

f(x) .

Definition 3.3.1. A signed succession rule is a succession rule on Z,

Ω =





(a)
(a) (b1) . . . (ba)
(k) (e1(k)) . . . (ek(k))

where k ∈ N+, a is a constant in N+, bi ∈ Z for i = 1 . . . a, and the ej are functions
N→ Z. The production for (−k) is taken to be the opposite of the (k) rule, that is,

(−k) (−e1(k)) . . . (−ek(k)).

Remark Definition 3.3.1 fits with the definition of Merlini, Sprugnoli and Verri [75] or
Corteel [30] definition of a signed succession rule, even if our notations are slightly different.
We choose to mark negative productions by negative integers. For instance our signed rule
(3)  (2)(−3)2 corresponds, in their notation, to the rule (3)  (2)(3)−2. Our notation
allows us to define proper signed succession rules, in which the exponents really correspond
to multiplicities.

Let Ω be a signed succession rule. We denote by σ(v) ∈ {+,−} and l(v) respectively the
sign and the level of a given node v. The function fΩ(x) =

∑
v σ(v)xl(v) is the generating

function associated to Ω.

Example 3.3.1. In Figure 3.4 there are the first levels of the generating tree of the following
signed succession rule:





(1)
(1) (−2)
(k) (2) . . . (k + 1)(−2),

(3.4)

we can easily check that the first numbers of the sequence defined by this rule are 1, −1, −1,
and −2.

Definition 3.3.2. For a signed succession rule Ω, we denote by |Ω| the following rule,

|Ω| =





(a)
(a) (|b1|) . . . (|ba|)
(k) (|e1(k)|) . . . (|ek(k)|)

Given a signed succession rule Ω, and an ECO-system (‖O‖, p, ϑ‖O‖, |Ω|), it is quite natural
to define the set of signed objects O which is described by Ω. A signed object u of O is a
couple u = (σ(u), ‖u‖), where σ(u) ∈ {+,−} is the sign of u and ‖u‖ is the corresponding
object in the non signed class ‖O‖. Then, each path in the signed generating tree defines a
non signed object in the corresponding non signed generating tree, by forgetting the signs.
And the sign of a signed object is the sign of the last node in the signed path. The generating
function of a class O of signed objects is fO(x) = 1 +

∑
u6=ε σ(u)xp(‖u‖).
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(-2)

(-2)

(-2) (-2)(2)

(2)

(3)

(-3)

(1)

(2)(-3) (2)(-4)(-3)(-2)

Figure 3.4: The first levels of the generating tree of the rule of Example 3.3.1.

As a first application of the definition of signed succession rules, we define the subtraction
operator, answering a question of Pergola et al. [80]. In the last section we have defined
the sum ⊕ between two succession rules and this definition can be easily extended to signed
rules. In order to define the subtraction operator on succession rules, we introduce the unary
operator −, which is related to the signed succession rules.

Definition 3.3.3. Let Ω be a succession rule, then −Ω is defined by,

−Ω =





(̃a)

(̃a) (−b1) . . . (−ba)
(k) (e1(k)) . . . (ek(k))

The generating function of −Ω clearly satisfies f−Ω = 1− (fΩ − 1).

Definition 3.3.4. Let Ω and Ω′ be two successions rules, then the binary operator 	 is
defined by Ω	 Ω′ = Ω⊕ (−(Ω′)).

Lemma 3.3.1. If Ω and Ω′ are two successions rules, then Ω	Ω′ corresponds to the following
signed succession rule and its generating function satisfies fΩ	Ω′ = fΩ − fΩ′ + 1,

Ω	 Ω′ =





˜(a+ a′)
˜(a+ a′) (b1) . . . (ba)(−b′1) . . . (−ba′)

(k) (e1(k)) . . . (ek(k))

(k) (e′1(k)) . . . (e
′
k(k))
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-

k

b1 ba −b1 −ba

−k

e1 . . . ek b1 . . . ba−b1 . . . − ba

e1

−e1 . . . − ek

Figure 3.5: The generating tree associated to Ω⊗ Ω−⊗.

3.4 Inversion of succession rules

We are now able to give pseudo-succession rules for the inverse of a rule with respect to ⊗ and
� operations, which are deduced by combining the unary operators − and ∗. Let us define

Ω−⊗ =





(̃a)

(̃a) (−b1) . . . (−ba)
(k) (e1(k)) . . . (ek(k))(−b1) . . . (−ba)

Ω−� =





(̃a)

(̃a) (−b1) . . . (−ba)
(k) (e1(k)) . . . (ek(k))(−b1)2 . . . (−ba)2.

Theorem 3.4.1. The pseudo-succession rules Ω−⊗ and Ω−� are inverses of Ω, such that
fΩ⊗Ω−⊗ = 1 and fΩ�Ω−� = 1.

Proof. We remark that these rules can be written Ω−⊗ = (−Ω)∗ and Ω−� = ((−Ω)∗)∗,
so that their generating functions satisfy fΩ−⊗⊗Ω(x) = 1 and fΩ−��Ω(x) = 1. Another
(bijective) proof can be given as shown in Figure 3.5 for the operation ⊗, by defining a nat-
ural involution on the paths of this generating tree. At level 1, each bi can be sent on the
corresponding −bi. At greater levels, a path from bi to ej (resp. −bj) can be sent on the cor-
responding path from −bi to −ej (resp. bj), which concludes the proof. A similar involution
can be found for proving fΩ�Ω−� = 1. �

Example 3.4.1. Inverse of Fibonacci and Catalan, with respect to the operators ⊗ and �:
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(-2)

(1)

(3)(2)(2)

(-3)

(2)(-2) (-3) (-4) (2)

(-2)

(2)(-3) (2)(-2) (-2) (-2)

(2)

(3) (-2)

(2)

(-2)

Figure 3.6: The generating tree associated to Γ−�

Fibonacci Ψ−⊗ =





(̃1)

(̃1) (−2)
(1) (2)(−2)
(2) (1)(2)(−2)

Ψ−� =





(̃1)

(̃1) (−2)
(1) (2)(−2)2

(2) (1)(2)(−2)2

Catalan Γ−⊗ =





(1)
(1) (−2)
(k) (2) . . . (k + 1)(−2)

Γ−� =





(1)
(1) (−2)
(k) (2) . . . (k + 1)(−2)2

The first levels of the generating trees associated with Γ−⊗ and Γ−� are represented re-
spectively in Figure 3.4 and in Figure 3.6.
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3.5 Rational succession rules

The subject of this section are rational succession rules. We first propose a simple tool to pass
from a rather general family of linear recurrence relations defining non-decreasing sequences
of positive integers, to rational succession rules defining the same sequences. Secondly we use
signed succession rules in order to deal with two term recurrences defining any sequence of
numbers. Related results on succession rules with rational generating functions can be found
in Banderier et al. in [1].

Our technique provides interesting combinatorial interpretations (in terms of generating
trees) for sequences that are defined by a linear recurrence relation, using an approach different
from that in [4] and [9]. In particular, as an application of our method, we give a simple
solution to a problem proposed by Jim Propp on the mailing list “domino” (1999), where he
asked for the combinatorial interpretation of the sequence 1, 1, 1, 2, 3, 7, 11, 26, . . . (sequence
A005246 in [92]) defined by the linear recurrence relation:

{
f0 = 1, f1 = 1, f2 = 1, f3 = 2
fn = 4fn−2 − fn−4.

3.5.1 Some positive two term linear recurrences.

Consider a sequence of non-decreasing positive integers (fn)n≥0 satisfying a two term linear
recurrence of the form:

fn = h1fn−1 + h2fn−2, h1, h2 ∈ Z.

As far as we know it is an open problem to give combinatorial interpretations to arbitrary
sequences of this type. As shown by the following proposition succession rules allow to solve
easily this problem for a large class of these recurrences.

Proposition 3.5.1. Assume h1 > 0, and h1 + h2 > 0. Then the succession rule

Ω =

{
(s0)
(k) ; (1)k−1 (φ(k)) ,

with φ(k) = (h1 − 1)k + h2 + 1, defines the sequence (fn)n≥2 with initial conditions f0 = 1,
f1 = s0 ∈ N+.

Proof. Observe that the conditions imposed on h1 and h2, ensure the positivity of the
labels of Ω. Let f ′n denote the number of nodes at level n of the generating tree. We will
check that f ′n satisfies the same recurrence as fn. Trivially, we have f ′

0 = 1 and f ′1 = s0.
Let k1, k2, . . . kf ′n−2

be the labels at level n − 2 of the generating tree of Ω. Let us consider

the f ′n−1 labels at level n − 1. On the one hand their sum is equal to f ′
n according to the

consistency principle. On the other hand, according to the definition of the rule their sum is
equal to

k1 + k2 + . . .+ kf ′n−2
− f ′n−2 + (h1 − 1)(k1 + k2 + . . .+ kf ′n−2

) + (h2 + 1)f ′n−2.
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Consequently, using again the consistency principle we have

f ′n = f ′n−1 − f ′n−2 + (h1 − 1)f ′n−1 + (h2 + 1)f ′n−2 = h1f
′
n−1 + h2f

′
n−2 n ≥ 2.

�

Observe that a similar kind of succession rules had already been shown to have rational
generating function by Banderier et al. [1]. More generally, assuming that there exists a
positive integer c such that:

(i.) if c ≤ s0 then 1 ≤ c ≤ h1 and (h1 − c)c+ h2 > 0;

(ii.) if c > s0 then s0 < c ≤ h1 and (h1 − c)s0 + h2 + c > s0,

the sequence fn is also given by the succession rule:

Ω2 =

{
(s0)
(k) ; (c)k−1 (φ(k))

where c, s0 ∈ N+, φ(k) = (h1 − c)k + h2 + c. Again the conditions on h1 and h2 are
required for the positivity of the labels.

Example 3.5.1. Let us consider the recurrence

f0 = 1, f1 = 2 fn = 3fn−1 − fn−2,

defining odd-index Fibonacci numbers 1, 2, 5, 13, 34, 89, 233, . . . (sequence A001519 in [93]).
A succession rule defining this sequence is

{
(2)
(k) (2)k−1(k + 1).

(3.5)

3.5.2 Linear recurrences with more than two terms.

In this paragraph we consider linear recurrences defining non-decreasing sequences of positive
integers with the following form:

fn = h1fn−1 + h2fn−2 + . . . + hmfn−m, where hi ∈ Z,

with m ≥ 3.
We now extend the statement of Proposition 3.5.1. In order to do that let us fix two

integers c0 and s0, and define for ` = 1, . . . ,m− 2




c` = (h1 − c0)c`−1 +
∑`+1

i=2 hi + c0

s` = (h1 − c0)s`−1 +
∑`+1

i=2 hi + c0

then we consider the rule

Ωm =





(s0)
(s`) ; (c0)

s`−1(s`+1) for ` = 0, . . . ,m− 3
(c`) ; (c0)

c`−1(c`+1) for ` = 0, . . . ,m− 3
(k) ; (c0)

k−1 (φ(k))
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where

φ(k) = (h1 − c0)k +
m∑

i=2

hi + c0,

and we add colors if necessary to distinguish ambiguous labels.
For this rule to be well defined with positive labels, a sufficient condition is that the con-

stants c` and s` be positive, c0 ≤ h1, φ(cm−2) > min(cm−2, sm−2) and φ(sm−2) > min(cm−2, sm−2).

Theorem 3.5.1. Assume that there exists c0 such that h1, . . . , hm and s0 satisfy the previous
conditions. Then the succession rule Ωm gives the non-decreasing positive sequence satisfying
the recurrence relation:

fn = h1fn−1 + h2fn−2 + . . . + hmfn−m,

with initial conditions fi = 0, for i = −m+ 2, . . . ,−1, f0 = 1, and f1 = s0.
In particular, if h1 > 0, h1 + h2 > 0, . . . , h1 + . . . + hm > 0 then the result is valid for

any 1 ≤ c0 ≤ h1. Taking c0 = h1 gives moreover a finite rule.

Proof. Observe that the number of labels c` at level n of the generating tree of the rule
Ωm is f ′n−` − f ′n−`−1, for all ` = 0, . . . ,m− 2, where f ′

n denote the total number of labels at
level n. The proof is then a variation on the proof of Proposition 3.5.1. �

Example 3.5.2.

i) The sequence (fn)n≥0 satisfying the recurrence relation:

fn = 3fn−1 − 2fn−2 + fn−3,

with f1 = 0, f0 = 1, f1 = 2, is defined by the succession rule:





(2)
(1) ; (1)
(2) ; (1)(3)
(k) ; (1)k−1(2k) k ≥ 3.

ii) NSW numbers (sequence A002315 in [92]) are defined by the recurrence relation:

fn = 6fn−1 − fn−2, f0 = 1, f1 = 7.

These numbers count the total area under elevated Schröder paths [79, 12]. According
to Theorem 3.5.1, the succession rule defining these numbers is:

{
(7)
(k) (1)k−1(5k)
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iii) Self-avoiding walks of length n, contained in the strip {0, 1} × [−∞,∞], are counted by
the sequence {fn} that satisfies a linear recurrence relation [101]:

f0 = 1, f1 = 3, f2 = 6, f3 = 12, f4 = 20, f5 = 36, f6 = 58, f7 = 100,
fn = fn−1 + 3fn−2 + 2fn−3 − 3fn−4 + fn−5 + fn−6 n > 7.

(3.6)

For simplicity we change the initial conditions into:

f−i = 0, i = 1 . . . 5
f0 = 1.

Then the succession rule obtained applying Theorem 3.5.1 is:





(1)
(1) (4)
(3) (1)2(4)
(4) (1)3(6)
(4) (1)3(5)
(5) (1)4(5)
(6) (1)5(3).

We remark that a rule defining the original number sequence can be simply obtained by
adding some other productions, in order to satisfy the initial conditions.

Example 3.5.3. It is also possible in some cases to deal with recurrences having h1 = 0,
along the similar lines as above. For instance here is a succession rule for the number sequence
1, 2, 3, 7, 11, 26, . . . , defined at the beginning of Section 3.5.





(2)
(2) ; (1)(2)
(1) ; (4)
(4) ; (1)3(1)
(3) ; (1)2(1)
(1) ; (3).

3.5.3 Succession rules with negative labels.

Theorem 3.5.1 clearly does not involve the whole set of rational generating functions. If we
want to treat the whole set of rational generating functions we have to allow labels of the
rules to contain negative values. Under this hypothesis, we find again the concept of signed
succession rules, introduced in Section 3.3. A signed succession rule defines a sequence of
integer numbers (fn)n≥0, where the term fn is given by the number of positive labels minus
the number of negative labels at level n of the generating tree. Now, we want to investigate
the relationship between linear recurrences and signed succession rules by applying the same
tools that we used for recurrences with positive terms. Hereafter we present the main results
concerning linear recurrences with two terms.
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Let us consider a two term linear recurrence fn = h1fn−1 + h2fn−2, with h1, h2 ∈ Z. and
initial conditions f1 = s1, f2 = s2 in Z. To this sequence we associate the rule

Ωε
2 =





(|s1|+ 2)

(|s1|+ 2) ; (εs11)
|s1|(p)(−q)

(k) ; (ε1c)
k−1 (ε2φ(k))

(−k) ; (−ε1c)k−1 (−ε2φ(k))

for k > 0,

where εs1 is the sign of s1, p, q are positive integers such that p− q = ε1s2 − ε1ε2s1,

φ(k) = (ε2h1 − ε1ε2(c− 1)− 1)k + 2− 2ε1ε2 + ε1ε2(h2 + c) + (ε1 − ε2)h1,

and c, ε1, and ε2 satisfy the following conditions (that imply φ(k) > 0 for k ≥ 1):

(i.) ε2h1 − ε1ε2(c− 1)− 1 ≥ 0

(ii.) φ(1) = −ε1ε2 + ε1ε2h2 + ε1h1 + 1 > 0

Observe that given h1 6= 0, h2, s1, and s2 it is always possible to find c, ε1, and ε2: in
particular, if we take ε1 of the sign of h1, then we can set c = ε1h1 − ε1ε2 + 1 to satisfy the
first condition, and the second condition reduces to c+ ε1ε2h2 > 0, which can be satisfied by
choosing ε2 of the sign of ε1h2 since c ≥ 1.

Theorem 3.5.2. The succession rule Ωε
2 defines the sequence (fn)n≥1, satisfying the linear

recurrence fn = h1fn−1 + h2fn−2, with initial terms f1 = s1, f2 = s2, and h1 6= 0, h2 in Z.

Proof. The axiom produces, at level 1 of the generating tree, |s1| + 1 nodes with labels
of the sign of s1 and 1 of the other sign. Therefore f1 = s1. At the second level the condition
on p− q and the general production gives f2 = s2.

Let us suppose to have l positive labels and m negative ones at level n−2 of the generating
tree, for n ≥ 2. Thus by definition of negative succession rules, l−m = fn−2. Let us denote by
k1, k2, . . . kl the positive labels, and by l1 l2, . . . lm the negative ones. A node with a positive
label (ki), produces (ε1c)

ki−1(ε2φ(ki)), for i = 1 . . . l. On the other hand, a node with negative
labels, (lj), produces (−ε1c)lj−1(−ε2φ(lj)), for j = 1 . . . m. Consequently, at level n − 1, we
have the following labels

(ε1c)
ki−1(ε2φ(ki)) for i = 1 . . . l

(−ε1c)lj−1(−ε2φ(lj)) for j = 1 . . . m
(3.7)

Since φ(k) is positive, we know the sign of all these labels. Therefore the number of nodes at
level n− 1 of the generating tree is given by

fn−1 = ε1
∑l

j=1(ki − 1) + ε2l − ε1
∑m

j=1(lj − 1)− ε2m

= ε1
∑l

j=1(ki − 1)− ε1
∑m

j=1(lj − 1) + ε2fn−2.

(3.8)
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Therefore

ε1(fn−1 − ε2fn−2) =

l∑

i=1

(ki − 1)−
m∑

i=1

(li − 1)

Now, the productions of the labels at level n− 1 are (3.7)

(ε1c) ; (c)c−1(ε2ε1φ(c)),

l∑

i=1

(ki − 1) times,

(ε2φ(ki)) ; (ε2ε1c)
φ(ki)−1(φ(φ(ki))), for i = 1, . . . , l,

(−ε1c) ; (−c)c−1(−ε2ε1φ(c)),
m∑

i=1

(li − 1) times,

(−ε2φ(li)) ; (−ε2ε1c)φ(li)−1(−φ(φ(li))), for i = 1, . . . ,m.

Hence
fn =

(∑l
j=1(ki − 1)−∑m

j=1(lj − 1)
)

((c− 1) + ε1ε2) + fn−2 +

+ε1ε2
∑l

j=1(φ(ki)− 1)− ε1ε2
∑m

j=1(φ(lj)− 1).

By using equation (3.8) we obtain

fn = ε1(fn−1 − ε2fn−2)(c− 1 + ε1ε2) + fn−2 + ε1ε2

l∑

j=1

(φ(ki)− 1)− ε1ε2
m∑

j=1

(φ(lj)− 1),

which is equal to

fn = (fn−1 − ε2fn−2)(ε1(c− 1) + ε2) + fn−2(1− ε1ε2)+

+ε1ε2(ε2h1 − ε1ε2(c− 1)− 1)(
∑l

j=1(ki − 1)−∑m
j=1(lj − 1))+

+ε1ε2(l −m)(−ε1ε2 + ε1ε2h2 + ε1h1 + 1).

Consequently,

fn = (fn−1 − ε2fn−2)(ε1(c− 1) + ε2 + ε2(ε2h1 − ε1ε2(c− 1)− 1))

+fn−2(1− ε1ε2) + ε1ε2fn−2(−ε1ε2 + ε1ε2h2 + ε1h1 + 1)

= fn−1h1 + fn−2h2.

�

Example 3.5.4. Let us consider the number sequence 1, 2,−10, 22,−26,−10,
134, . . . , defined by the recurrence relation:

f0 = 1, f1 = 2,
fn = −3fn−1 − 4fn−2 n > 1.
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A succession rule defining this sequence is obtained from rule Ωε
2 with c = 1, ε1 = 1, and

ε2 = −1. In this case, since f0 = 1, we can take s1 = 2 and s2 = −10. Thus we obtain the
followin rule:





(4)
(k) ; (1)k−1(−2k − 1)
(−k) ; (−1)k−1(2k + 1).

Example 3.5.5. Odd-index Fibonacci numbers with alternating sign, 1,−2, 5,
− 13, 34,−89, . . . , are defined by the recurrence relation,

f0 = 1, f1 = −2,
fn = −3fn−1 − fn−2 n > 1.

A succession rule defining such a sequence is obtained from Ωε
2 where c = 1, ε1 = −1, and

ε2 = −1,





(4)
(4) ; (−1)2(1)(−4)
(k) ; (−1)k−1(−2k)
(−k) ; (1)k−1(2k).

We point out that the rule (3.5.5) is very similar to (3.5), which defines odd-index Fi-
bonacci numbers.



Part II

ECO method and Object grammars
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Chapter 4

From Object Grammars to

ECO-systems

This chapter will investigate the relationship between object grammars and ECO method.
As already said, the ECO method constructs each object from a smaller one by making some
local expansions. On the other hand, object grammars describe the objects by decomposing
them. These recursive methods have many common applications, as for instance enumeration
of objects, bijections, and uniform random generation. We are interested in comparing them.
Roughly speaking, an object grammar and an ECO-system are considered “equivalent” when
they both define a construction for the same class O according to the same parameter p.
Therefore there are two natural questions:

1. Is it possible to obtain an ECO-system from an object grammar?

2. Is it possible to obtain an object grammar from an ECO-system?

Here we examine Question 1., that is, the problem of passing from an object grammar
to an ECO-system (Question 2. will be discussed in Chapter 6). The main contribution of
this chapter is a method to get, from a complete and unambiguous object grammar G for a
class O, an ECO-system for O, according to some linear parameter. The result is obtained
by providing an ECO construction for a class of trees, called α-trees, in bijection with the
class of derivation trees of G, that is in turn in bijection with the class O. We first prove it
for unidimensional object grammars (Theorem 4.3.1). Then we extend it to multidimensional
object grammars (Theorem 4.4.1). Pratically this means that a class described by a complete
and unambiguous object grammar can be also described by an ECO-system according to a
linear parameter.

The chapter is organized as follows. In Section 4.1 we recall the main definitions con-
cerning object grammars. In Section 4.2 we introduce the concept of linear parameters and
q-parameters on object grammars. In Section 4.3 we show how to obtain an ECO-system
starting from an unidimensional, unambiguous, and complete object grammar according to
a linear parameter. In particular we first deal with the easier case of uniform linear param-
eters (Theorem 4.3.2) and then we deal with linear parameters (Theorem 4.3.3). In Section
4.4 we extend the result obtained for unidimensional grammars to multidimensional ones
(Theorem 4.4.1). In Section 4.5 we explicitly construct the ECO-system associated with the
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multidimensional grammar for directed convex polyominoes. An account of the results of this
chapter can be found in [38].

4.1 Object Grammars

We recall some basic definitions for object grammars and then we give some examples. One
can refer to Dutour [44] for more details.

4.1.1 Definitions

Definition 4.1.1. Let O be a finite family of classes of objects. An object operation in O is
a mapping φ : O1× . . .×Ok → O, where O,Oi ∈ O, i = 1, . . . , k. The domain and codomain
of an object operation are respectively denoted as dom and cod.

An object operation describes a way of building recursively an object of O from k objects
belonging to O1, . . . ,Ok.

Definition 4.1.2. An object grammar is a quadruple 〈O,E,Φ,A〉 where :

- O is a finite family of classes of objects.

- E = {EO}O∈O
is a finite family of finite subclasses of the classes belonging to O. The

objects of E are called terminal objects.

- Φ is a finite set of object operations in O.

- A is a fixed class of O, called the axiom of the grammar.

The dimension of an object grammar is the cardinality of O.

Definition 4.1.3. Let G = 〈O,E,Φ,A〉 be an object grammar and let O ∈ O. A derivation
tree of G on O is an ordered labelled tree T , recursively described as follows :

- if T is reduced to a leaf then the label is a terminal object belonging to O,

- if the root of T has k sons then its label is an object operation φ ∈ Φ,

φ : O1 × . . .×Ok → O,

where Oi ∈ O and such that the i-th son of the root is the root of a derivation tree on
the class Oi, i = 1 . . . k.

Definition 4.1.4. The evaluation ev(T ) of a derivation tree T is an object defined as follows :

- if T is a single node labelled E, then ev(T ) = E,

- otherwise, if the root of T is labelled φ ∈ Φ and its k subtrees are T1 . . . Tk, then
ev(T ) = φ(ev(T1), . . . , ev(Tk)).

Definition 4.1.5. Let G = 〈O,E,Φ,A〉 be an object grammar. An object O ∈ O is said to
be generated in G by O if there is a derivation tree T on O such that ev(T ) = O.

The class of objects generated in G by A is said to be the class generated by G.
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, φ2

Figure 4.1: The object operation φ2 of the grammar GD.

Definition 4.1.6. An object grammar G is said to be complete if, for all O ∈ O, the class
of objects generated in G by O is equal to O.

Definition 4.1.7. An object grammar G is said to be unambiguous if every object generated
by G admits at most one derivation tree.

If TG denotes the class of derivation trees of a grammar G, then the following statement
trivially holds:

Proposition 4.1.1. If G is a complete and unambiguous object grammar generating the class
O, then the function ev : TG → O is a bijection.

A complete and unambiguous object grammar G = 〈O,E,Φ,A〉 of dimension m can be
also written as a system Σ of equations:

Σ = {O1 = P1(O1, . . . ,Om), . . . ,Om = Pm(O1, . . . ,Om)},

where for all i = 1 . . . m

Pi(O1, . . . ,Om) =
∑

ei∈EOi
ei +

∑

cod(Φ)=Oi
Φ(Oi1,Φ , . . . ,Oik,Φ).

From now on, we will often use the term grammar in place of object grammar. Moreover
we will omit the axiom in the case of unidimensional grammars. Object grammars are most
often described by pictures, as in the following examples.

4.1.2 Some examples of object grammars

Dyck paths. Let D be the class of Dyck paths. The mapping φ2 depicted in Figure 4.1
is a binary object operation on the class D of Dyck paths: it takes a pair of Dyck paths as
its argument, adds a rise (resp. fall) step at the beginning (resp. end) of the first path and
then appends the second path. The class D is generated by the unidimensional, complete,
and unambiguous object grammar

GD = 〈D, {{.}}, {φ2}〉

where the terminal object is the Dyck path of zero length, commonly represented as a dot.
Each Dyck path is then univocally associated with a derivation tree of GD (see for instance
Figure 4.2).
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φ2

φ2

φ2 φ2

φ2

Figure 4.2: A derivation tree from the grammar GD and the corresponding Dyck path.

,  

φ1

φ2

Figure 4.3: The object operations, φ1, φ2 of the grammar GM.

Motzkin paths. LetM be the class of Motzkin paths. The mappings φ1 and φ2, illustrated
in Figure 4.3, are the object operations onM. The first is unary while the second is binary :

- operation φ1 adds an horizontal step at the beginning of the Motzkin path;

- operation φ2 takes a pair of Motzkin paths as its argument, adds a rise (resp. fall) step
at the beginning (resp. end) of the first path and then appends the second path.

The classM is generated by the unidimensional, complete, and unambiguous object grammar

GM = 〈{M}, {{.}}, {φ1 , φ2}〉

where the terminal object is the path of zero length, represented as a dot.

Parallelogram polyominoes. Let P be the set of parallelogram polyominoes. The map-
pings φ1

1, φ
2
1, and φ2, illustrated in Figure 4.4, are the object operations on P:

- operation φ1
1 adds a cell at the left of the lowest cell of the first column of the polyomino;

- operation φ2
1 adds a cell at the bottom of every column of the polyomino;

- operation φ2 applies φ2
1 to the first polyomino and then glues the right side of the top

cell of the last column of the first one to the left side bottom cell of the first column of
the second one.

The unidimensional, complete, and unambiguous grammar

GP =
〈
{P}, {{2}}, {φ1

1 , φ
2
1, φ2}

〉
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,

φ2
1

φ1
1

φ2

Figure 4.4: The object operations φ1
1, φ

2
1, φ2 of the grammar GP .

φ1
1

φ2
1

φ2

φ2

φ1
1

φ2
1

Figure 4.5: A polyomino and its derivation tree according to GP .

generates the class P, where 2 denotes the single-cell polyomino. Figure 4.5 illustrates a
derivation tree of GP and its corresponding polyomino.

Directed convex polyominoes Let Pcd be the class of directed convex polyominoes, let
Pcdm be the class of directed convex polyominoes with one marked cell in their last col-
umn, and let P be the class of parallelogram polyominoes. Then Pcd is generated by the
3-dimensional grammar

GPcd =< {Pcd,Pcdm,P}, {{2}, ∅, {2}}, {θ1
1 , θ

2
1, θ2, ψ

1
1 , ψ

2
1 , ψ2, φ

1
1, φ

2
1, φ2},Pcd >,

represented in Figure 4.6 as a system of graphical equations. The operations θ1
1 and ψ2

1

are defined in the same manner as φ2
1, and θ2 and ψ2 are similar to φ2, where φ2

1 and φ2

were previously described for the grammar GP of parallelogram polyominoes. The operation
θ2
1 takes a polyomino in Pcdm and it glues a new cell to the right of the marked cell in the
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= + + +

θ11

θ2

θ21

= + +

ψ1
1

ψ2
1

ψ2

=

φ1
1 φ2

1

φ2

+ ++

Figure 4.6: The grammar GPcd for directed convex polyominoes.

polyomino. Finally ψ1
1 takes a polyomino in Pcd and marks the bottom cell of the last column.
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4.2 Linear parameters and q-parameters

Definition 4.2.1. Let O,O1, . . .Ok be some classes of combinatorial objects and p a finite
parameter on O,O1, . . . ,Ok. Let φ be an object operation such that dom(φ) = O1× . . .×Ok
and cod(φ) = O. Then p is said to be a linear parameter with respect to φ if

p (φ(O1, . . . , Ok)) =

k∑

i=1

p(Oi) + p(φ), (4.1)

where (O1, . . . , Ok) ∈ dom(φ) and p(φ) ∈ N is a constant.

Definition 4.2.2. Let G = 〈O,E,Φ,A〉 be an object grammar. A parameter p is said to
be G-linear if, for all O ∈ O, p is linear with respect to each operation φ ∈ Φ such that
cod(φ) = O.

A G-linear parameter p is called uniform if,

∀φ ∈ Φ, p(φ) = 1

and,

∀e ∈
⋃

O∈O
EO, p(e) = 1.

Lemma 4.2.1. Let p be a G-linear parameter on G. Then, for any object O generated by G
with derivation tree T (so that ev(T ) = O), we have

p(O) =
∑

x∈T
p(φx), (4.2)

where, for x a node of T , φx is its label.

Proof. The proof can be achieved by recursion on equation (4.1) defining p. �

Example 4.2.1. Let GD be the grammar for Dyck paths (see 4.1.2), then the length l of a
path is GD-linear. Indeed for every D1, D2 ∈ D,

l(φ2(D1, D2)) = l(D1) + l(D2) + 2.

We take here l(φ2) = 2 since φ2 adds two steps to (D1, D2), and l(.) = 0 since the empty path
has zero length.

Example 4.2.2. Let GM be the grammar for Motzkin paths (see 4.1.2), then the length l of
a path is GM-linear. Indeed for every M1,M2 ∈M,

l(φ1(M1)) = l(M1) + 1

l(φ2(M1,M2)) = l(M1) + l(M2) + 2

since φ1 adds one step to M1 and φ2 adds two steps to (M1,M2).
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Example 4.2.3. Let GP be the grammar for parallelogram polyominoes (see 4.1.2), then the
perimeter p of a polyomino is GP -linear. Indeed for every P1, P2 ∈ P we have

p(φ1
1(P1)) = p(P1) + 2

p(φ2
1(P1)) = p(P1) + 2

p(φ2(P1, P2)) = p(P1) + p(P2).

In [44] Dutour proved that linear parameters lead to algebraic generating functions for
the class O.

Definition 4.2.3. Let O,O1, . . .Ok be some classes of combinatorial objects and q be a pa-
rameter on O,O1, . . . , Ok. Let φ be an object operation such that dom(φ) = O1 × . . . ×Ok
and cod(φ) = O. Then q is a q-parameter with respect to φ if, for all (O1, . . . , Ok) ∈ dom(φ),

q (φ(O1, . . . , Ok)) =

k∑

i=1

q(Oi) +

k∑

i=1

qi(φ)t(Oi) + q(φ), (4.3)

where the qi(φ) ∈ N for i = 1 . . . k, and q(φ) ∈ N are constants, and t is a parameter on
O1, . . . , Ok.

Definition 4.2.4. Let G = 〈O,E,Φ,A〉 be an object grammar. A parameter q is said to be
G-q-linear if, for all O ∈ O, q is a q-parameter with respect to each operation φ ∈ Φ such that
cod(φ) = O.

Lemma 4.2.2. Let q be a G-q-linear and t be a parameter. Then, for any object O generated
by G with derivation tree T , we have

q(O) =
∑

x∈T



k(x)∑

i=1

qi(φx)t(ev(Ti,x)) + q(φx)


 , (4.4)

where, for x a node of T , φx is its label, and the Ti,x, i = 1 . . . k(x), are the subtrees attached
to x.

Proof. The proof can be achieved by recursion on equation (4.3) defining q. �

Remark 4.2.1. If the parameter t is G-linear, we can apply (4.2) to (4.4) and then obtain
the following:

q(O) =
∑

x∈T



k(x)∑

i=1

qi(φx)
∑

y∈Ti,x
t(φy) + q(φx)


 . (4.5)
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Example 4.2.4. Let GP be the grammar for parallelogram polyominoes, then the area a of a
polyomino is a q-parameter on P with respect to the operations φ2

1 and φ2. Indeed for every
P1, P2 ∈ P we have

a(φ1
1(P1)) = a(P1) + 1

a(φ2
1(P1)) = a(P1) + nc(P1)

a(φ2(P1, P2)) = a(P1) + a(P2) + nc(P1),

where the parameter nc counts the number of columns of a polyomino.

From now on, we will only deal with complete and unambiguous object grammars.
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4.3 Object grammars and ECO method

In this section we introduce a generalization of succession rules that allows us to prove the
following theorem:

Theorem 4.3.1. Any unidimensional, complete, and unambiguous object grammar with a
linear parameter can be represented by an ECO-system with bounded jumps.

For this part we thus assume that the grammar G is unidimensional. In order to prove the
theorem we shall introduce a generic representation of derivation trees in terms of weighted α-
trees and of a well chosen parameter p′ on this class. Then we shall determine an ECO-system
describing the growth of this class of trees according to p′.

4.3.1 Jumping succession rules

Recently Ferrari, Pergola, Pinzani, and Rinaldi [52] extended ECO method by allowing the
ECO operator to generate objects of different sizes, greater than n, from any object of size
n. This naturally leads to the concept of jumping succession rules.

Let us fix m integers, 0 ≤ i1 < i2 . . . < im. These integers will represent the possible jump
lengths. We consider a growth operator of the form ϑ : O → 2O such that ϑ(On) ⊆ 2

∪mj=1On+ij ,
where n ∈ N. Proposition 1.3.1 generalizes as follows :

Proposition 4.3.1. If ϑ satisfies, for n ≥ 0,

1. for each O′ ∈ On there exists O ∈ ∪mj=1On−ij such that O′ ∈ ϑ(O), and

2. for every O,O′ ∈ O, ϑ(O) ∩ ϑ(O′) = ∅, whenever O 6= O′,

then the family of sets F =
{
ϑ(O) : O ∈ ∪mj=1On−ij

}
∩ 2On is a partition of On.

In this case we call ϑ an ECO operator with jumps. The operator ϑ can be described
by means of a generating tree with edges of various lengths, i1, . . . , im. This leads us to the
definition of jumping succession rule of the form :

Ω =





(a)

(k)
i1
 (e11(k))(e

1
2(k)) . . . (e

1
k1

(k))
...
im
 (em1 (k))(em2 (k)) . . . (emkm(k)),

(4.6)

where k ∈ N+, a is a constant in N+, the eji are functions N+ → N+, and we assume that
k1 + k2 + . . . + km = k to fit with the consistency principle. The growth of the objects
by means of ϑ is described by Ω if, for every object O such that |ϑ(O)| = k and for all
j = 1 . . . m, there are exactly kj objects O′

1, . . . , O
′
kj

that belong to ϑ(O), have size |O| + ij ,

and verify |ϑ(O′
l)| = ejl (k) for 1 ≤ l ≤ kj. A succession rule in the form of (1.1) is then a

jumping succession rule with m = 1 and i1 = 1. Like for succession rules, we denote {fn}n
the sequence defined by a jumping succession rule, where fn is the number of nodes at level
n of the generating tree.
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Figure 4.7: The first levels of ϑ

Example 4.3.1. Let M be the class of Motzkin paths, and let M ∈ M. Let us denote by
`d(M) the last sequence of fall steps of M . Then ϑ(M) is the set of Motzkin paths that are
obtained

- by adding a peak on a point of `d(M); then the length increases by 2;

- by adding an horizontal step on a point of `d(M); then the length increases by 1.

Let P (M) the set of points of `d(M). In particular |ϑ(M)| = 2|P (M)|. Figure 4.7 represents
the first levels of the generating tree of ϑ. Replacing each object M by a label |ϑ(M)|, this
generating tree is encoded by the jumping succession rule

Ω =





(2)

(2k)
1
 (2)(4) . . . (2k)
2
 (4)(6) . . . (2k + 2).

The first levels of the generating tree of the rule are represented in Figure 4.8. This rule
defines the sequence 1, 1, 2, 4, 9, 21, . . . of Motzkin numbers and is equivalent to the rule of

Example 2.4.1, whose generating function is 1−x−
√

1−2x−3x2

2x2 .

4.3.2 Generic derivation trees

Let O be the class generated by G, Φ the set of operations of the grammar, and p a
linear parameter on O. As usual, let On denote the subset of objects of size n, that is
On = {O ∈ O : p(O) = n}.
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(2) (4) (4)(2)

(2)

(2)

(2)

(2) (2) (6)(4)

(4)

(2) (4)(2)(4) (4)

1

2

4

1

 9

Figure 4.8: The first levels of the generating tree associated with the rule in Example 4.3.1.

For a fixed positive integer d, let Φj, 0 < j ≤ d, denote the subset of Φ with operations
of degree j. Let Φ0 denote the set of terminal objects of the grammar G. In order to give
a uniform presentation of the ECO construction associated to a grammar, we introduce a
generic model of derivation tree.

Definition 4.3.1. Let d be a fixed non-negative integer and

α = (α0, α1, . . . , αd), αi ∈ N.

An α-tree is a labelled tree with nodes of degree at most d and such that each node of degree
j has a color i ∈ {1, 2, . . . , αj}. Given a weight wij ∈ N for each node of color i and degree
j, the associated weighted α-tree has labels of the form (i, wij) on nodes of degree j.

There is a simple bijection from TG, the set of derivation trees of G, to T wαG , the set
of weighted α-trees, where α = (|Φ0|, |Φ1|, . . . , |Φd|) and wij = p(φij) for all i = 1 . . . |Φj|,
j = 0 . . . d. For any T ∈ TG, the corresponding tree is obtained by replacing each label φij in

the tree T by the label (i, p(φij)), and vice versa.
From the previous statements one can easily adapt Proposition 4.1.1 to the class T wαG :

Proposition 4.3.2. If G is a complete, unambiguous, and unidimensional object grammar
generating the class O, then the function ev : T wαG → O is a bijection.

Definition 4.3.2. Let T ∈ T wαG . For any x ∈ T denote l(x) = (co(x), w(x)) the label of x.
Then p′(T ) =

∑
x∈T w(x).

Then, from Proposition 4.3.2, Definition 4.3.2, and Lemma 4.2.1 we have the following:

Lemma 4.3.1. Let T ∈ T wαG , then p′(T ) = p(ev(T )).
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φ1
1

φ2

(1, 0)

(2, 2)
(1, 2)

(2, 2)
(1, 0)

(1, 4)(1, 4) (1, 4)

(1, 2)

φ2
1φ1

1

φ2
1 φ2

Figure 4.9: A derivation tree of the grammar GP and the corresponding weighted α-tree.

← last internal node.

1

1
2

1

1

1

1
1 2

2

Figure 4.10: The active sites in a (2, 1, 1)-tree.

Example 4.3.2. Figure 4.9 shows a derivation tree of the grammar GP of Subsection 4.1.2
and the corresponding weighted α-tree, where the weight is defined according to the perimeter,
with p(φ1

1) = p(φ2
1) = 2 and p(φ2) = 0. The sum p′ of the weights is then equal to 20.

In order to complete our program, we must determine an ECO construction for the class
T wαG according to p′. For this purpose we need to extend slightly the class T wαG including
the empty tree of size 0, denoted by ε, that will correspond to the root of the generating
tree associated with the ECO construction. This root produces the initial α0 leaves in the
generating tree. We remark that, by extending the class T wαG to include ε, the generating
function of such a class increases by one. We will first show the ECO construction in the
simpler case of uniform parameters, and then we will extend it to the general case of linear
parameters.

4.3.3 The uniform parameter case

For the case where the parameter is uniform, given an object grammar and the resulting
TG, the problem reduces to determining an ECO-system for the associated class T αG of un-
weighted α-trees according to p′, which in this case becomes the number of nodes of a tree in
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active site

i

i

1 . . . α1

i i i

d− 1

1 . . . α0 . . . 1 . . . α01 . . . α0 1 . . . α0 1 . . . α0

1 . . . α2 1 . . . α3 1 . . . αd

α2
0α3 αd−1

0 αdα0α2α1

Figure 4.11: A graphical representation of the possible actions of the operator ϑ1 on an active
site of color i.

T αG . Observe that these trees are unweighted since the parameter on the objects is uniform.
In order to do this we generalize a construction that was proposed in [6] for plane trees.
For any T ∈ T αG , consider all leaves following the last internal node in the preorder traversal,
and call them the active sites of T . In Figure 4.10 we have marked the active sites of a
(2, 1, 1)-tree. Let T αn be the set of trees in T αG having exactly n nodes. Let ϑ1 denote the

operator from T αn to 2∪
d
i=1T αn+i , performing the following transformations on T :

i) if T is the empty tree, then ϑ1 produces α0 trees, namely for each color i = 1, . . . , α0, the
tree reduced to a leaf with color i.

ii) otherwise, for each active site A of T with color i, 1 ≤ i ≤ α0, and for each j ∈ {1 . . . d}, ϑ1

produces, j levels below, a tree with j new sons attached to A: the rightmost is colored
i, and the remaining j − 1 can be colored 1, . . . , α0. At this stage A is an internal
node of degree j and can be colored in αj ways (see Figure 4.11). The number of trees

generated by ϑ1, through this transformation, is then equal to
∑d

j=1 α
j−1
0 αj .

In Figure 4.12 has been developed, through ϑ1, the last active site (the first leaf in preorder
traversal) of the tree in Figure 4.10. Let c =

∑d
j=1 α

j−1
0 αj. Let us suppose that T has k

active sites. Then, from the construction, ϑ1 produces kc trees, among which (αj−1
0 αj)k lie j

levels below in the generating tree, for j = 1 . . . d.

Theorem 4.3.2. The system Σ = (T αG , p′, ϑ1,Ω1) is an ECO-system, where:

Ω1 =





(α0)

(α0)
1
; (c)α0

(kc)
1
; (c)α1 . . . ((k − 1)c)α1 (kc)α1

2
; (2c)α0α2 . . . (kc)α0α2 ((k + 1)c)α0α2

...
...

...
...

...
d−1
; ((d − 1)c)α

d−2
0 αd−1 . . . ((k + d− 3)c)α

d−2
0 αd−1 ((k + d− 2)c)α

d−2
0 αd−1

d
; (dc)α

d−1
0 αd . . . ((k + d− 2)c)α

d−1
0 αd ((k + d− 1)c)α

d−1
0 αd
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1
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1
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1

1

1

1
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1

1
1

1
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1

1

1

1
1 2

1

1

Figure 4.12: The trees obtained from a (2, 1, 1)-tree by developing one of its active sites.

Proof. The operator ϑ1 satisfies the conditions of Proposition 4.3.1.

1. for each T ′ ∈ T αn there is a T ∈ ∪mj=1T αn−j such that T ′ ∈ ϑ1(T ). To see this let l be
the last internal node of T ′ in the preorder traversal; T is the tree obtained from T ′

where the subtree having l as root is replaced with a leaf having the same color as the
rightmost son of l.

2. for each T ∈ T αn , T ′ ∈ T αm such that T 6= T ′, ϑ1(T )∩ϑ1(T
′) = ∅. This is easily deduced

from the construction. �

Now we will consider the generating function of Ω1. We recall that fΩ1 =
∑

n≥0 fnx
n,

where n denotes the level in the generating tree of Ω1 and fn is the number of labels at that
level. Let gΩ′

1
(x) =

∑
n≥0 gnx

n denote the generating function of
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Ω′
1 =





(1)

(k)
1
; (1)α1 . . . (k − 1)α1 (k)α1

2
; (2)α0α2 . . . (k)α0α2 (k + 1)α0α2

...
...

...
...

...
d−1
; (d− 1)α

d−2
0 αd−1 . . . (k + d− 3)α

d−2
0 αd−1 (k + d− 2)α

d−2
0 αd−1

d
; (d)α

d−1
0 αd . . . (k + d− 2)α

d−1
0 αd (k + d− 1)α

d−1
0 αd ,

the succession rule obtained from Ω1 by eliminating the constant c from each label and by
choosing (1) as axiom. Changing the axiom of Ω1 into (1) corresponds to descend one level
in the generating tree of Ω1. Thus

fΩ1(x) = 1 + xα0gΩ′
1
(x). (4.7)

Now let gn,k be the number of nodes at level n having label k, and

gΩ′
1
(x, y) =

∑

n≥0,k≥1

gn,kx
nyk.

Thus gΩ′
1
(x) = gΩ′

1
(x, 1). From rule Ω′

1, a node labelled (k) produces, j levels below, (αj−1
0 αj)k

nodes, for j = 1, . . . , d. Among these, αj−1
0 αj are labelled (k′), for k′ = j . . . k + j − 1. Then

we have the following:

gΩ′
1
(x, y) = y +

∑

n≥0,k≥1

gn,kx
n

d∑

j=1

αj−1
0 αj x

j (yj + yj+1 + . . .+ yk+j−1)

= y +
∑

n≥0,k≥1

gn,kx
n

d∑

j=1

αj−1
0 αj x

j y
j − yk+j

1− y .

Consequently,

gΩ′
1
(x, y) = y + α1x

∑
n≥0,k≥1 gn,kx

n y−yk+1

1−y + α0α2x
2
∑

n≥0,k≥1 gn,kx
n y2−yk+2

1−y +

. . .+ αd−1
0 αdx

d
∑

n≥0,k≥1 gn,kx
n yd−yk+d

1−y .

Then gΩ′
1
(x, y) satisfies the recurrence

gΩ′
1
(x, y) = y +

(
α1x

y

1− y + α0α2x
2 y2

1− y + . . .+ αd−1
0 αdx

d yd

1− y

)(
gΩ′

1
(x, 1)− gΩ′

1
(x, y)

)
.

Let us introduce h(x, y) so that

h(x, y) =
(
1− y + α1xy + α0α2x

2y2 + . . .+ αd−1
0 αdx

dyd
)
,

then
gΩ′

1
(x, y)h(x, y) = y(1− y) + gΩ′

1
(x, 1)(h(x, y) − 1 + y) .
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Using the kernel method we have

gΩ′
1
(x, 1) = y0(x), (4.8)

where y0(x) is the unique formal power series satisfying h(x, y) = 0, that is to say

y = 1 + α1xy + α0α2x
2y2 + . . .+ αd−1

0 αdx
dyd.

Then from (4.7) and (4.8) we obtain

fΩ1(x) = 1 + xα0y0.

Example 4.3.3. Let us consider the class of (1, 2, 2)-trees. Then c, defined as
∑2

j=1 α
j−1
0 αi,

is equal to 4. Consequently the rule Ω1 for the class of (1, 2, 2)-trees, extended with the empty
tree ε, is

Ω1 =





(1)

(1)
1
; (4)

(4k)
1
; (4)2 . . . (4(k − 1))2(4k)2

2
; (8)2 . . . (4k)2(4(k + 1))2.

Here h(x, y) = 1−y+2xy+2x2y2 and the generating function is 1+
1−2x−

√
((2x−1)2−8x2)

4x .

Example 4.3.4. The rule Ω1 for the class of (1, 0, 1)-trees, extended with ε, is

Ω1 =





(1)

(1)
1
; (1)

(k)
2
; (2) . . . (k)(k + 1).

Here h(x, y) = 1− y + x2y2 and the generating function is 1 + 1−
√

1−4x2

2x .

Example 4.3.5. The rule Ω1 for the class of (1, 1, 1)-trees, extended with ε, is

Ω1 =





(1)

(1)
1
; (2)

(2k)
1
; (2) . . . (2(k − 1))(2k)
2
; (4) . . . (2k)(2(k + 1)).

Here h(x, y) = 1− y + xy + x2y2 and the generating function is 1 + 1−x−
√
−3x2−2x+1
2x .
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4.3.4 The linear parameter case.

In this subsection we extend the statement of Theorem 4.3.2 to the case of linear parameters.
Recall that p′(T ) =

∑
x∈T w(x), so that in general adding a node changes the parameter by

w(x) instead of 1. We adapt the construction of the uniform case by “playing” on the jumps
of the associated generating tree: we define an operator ϑ2 in the same way as the operator
ϑ1 of Subsection 4.3.3, but when the new operator attaches j new sons to an active site A,
the resulting tree is produced at a level that depends on the exact colors of the nodes. More
precisely, A becomes an internal node of degree j, with label (ij , wijj), where ij ∈ {1 . . . αj};
the rightmost son of A receives the same color of A, and the other j − 1 sons are colored
(i0,t, wi0,t0), where i0,t ∈ {1 . . . α0} for t = 1 . . . j − 1. Then, the jump produced in the

generating tree has length wijj+
∑j−1

t=1 wi0,t0, or, in terms of the p(φij ), p(φ
ij
j )+

∑j−1
t=1 p(φ

i0,t
0 ).

The result is the following succession rule where, for clarity, we keep writing the jumps in
terms of p(φij) instead of wij .

Ω2 =





(α0)

(α0)
p(φ

i0
0 )
> (c) i0 = 1 . . . α0

(kc)
p(φ

i1
1 )
> (c) . . . ((k − 1)c) (kc) i1 = 1 . . . α1

p(φ
i2
2 )+p(φ

i0,1
0 )
> (2c) . . . (kc) ((k + 1)c)

{
i2 = 1 . . . α2

i0,1 = 1 . . . α0
...

...
...

...
...

p(φ
ij
j )+

Pj−1
t=1 p(φ

i0,t
0 )
> (jc) . . . ((k + j − 2)c) ((k + j − 1)c)

{
ij = 1 . . . αj
i0,t = 1 . . . α0

...
...

...
...

...

p(φ
id
d

)+
Pd−1
t=1 p(φ

i0,t
0 )
> (dc) . . . ((k + d− 2)c) ((k + d− 1)c)

{
id = 1 . . . αd
i0,t = 1 . . . α0

As a consequence, the following theorem generalizes Theorem 4.3.2:

Theorem 4.3.3. The system Σ = (T wαG , p′, ϑ2,Ω2) is an ECO-system.

The calculus of fΩ2 , the generating function of Ω2, is analogous, through more complicated,
to that in Subsection 4.3.3. We have

fΩ2(x) = 1 +

α0∑

i0=1

xp(φ
i0
0 )gΩ′

2
(x),

where Ω′
2 is obtained from Ω2 by eliminating the constant c from each label and by choosing

(1) as axiom. Now, by using the same arguments as for Ω′
1 (see Subsection 4.3.3), we obtain

gΩ′
2
(x, y) = y +

∑

n≥0,k≥1

gn,kx
n

(
∑

i1

xp(φ
i1
1 ) y − yk+1

1− y +
∑

i2

∑

i0

x(p(φ
i2
2 )+p(φ

i0,1
0 )) y

2 − yk+2

1− y +
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+ . . .+
∑

id

∑

i0,1i0,2...i0,d−1

x(p(φ
id
d

)+
Pd−1

t=1 p(φ
i0,t
0 )) y

d − yk+d

1− y


 ,

where ij = 1 . . . αj , and i0,t = 1 . . . α0. Thus

gΩ′
2
(x, y) = y +

(
∑

i1

xp(φ
i1
1 ) y

1− y +
∑

i2

∑

i0

x(p(φ
i2
2 )+p(φ

i0,1
0 )) y2

1− y+

+ . . .+
∑

id

∑

i0,1i0,2...i0,d−1

x(p(φ
id
d

)+
Pd−1

t=1 p(φ
i0,t
0 )) yd

1− y


 (gΩ′

2
(x)− gΩ′

2
(x, y)),

Consequently, by applying the kernel method, we obtain

fΩ2(x) = 1 +

α0∑

i=1

xp(φi
0)y0(x),

where y0(x) is the unique formal power series satisfying the equation

y = 1 +

d∑

j=1

∑

ij

∑

i0,1,... ,i0,j−1

xp(φ
ij
j )+

Pj−1
t=1 p(φ

i0,t
0 )yj ,

where ij = 1 . . . αj, and i0,t = 1 . . . α0.

As a particular case, if p(φ
ij
j ) =

{
1 if j ≥ 1
0 if j = 0

then the rules Ω2 becomes a simple

succession rule

Ω3 =





(α0)

(α0)
0
; (c)α0

(kc)
1
;

(c)α1 . . . ((k − 1)c)α1 (kc)α1

(2c)α0α2 . . . (kc)α0α2 ((k + 1)c)α0α2

...
...

...
...

(dc)α
d−1
0 αd . . . ((k + d− 2)c)α

d−1
0 αd ((k + d− 1)c)α

d−1
0 αd .

whose generating function is fΩ3(x) = 1 + y0(x), where y0(x) satisfies

y = 1 +
d∑

j=1

αj−1
0 αjxyj.

We remark that, in rule Ω3, the notation (α0)
0
; (c)α0 means that at level 0 of the generating

tree we have a node labelled by (α0) and we have α0 nodes labelled by (c), each of which
produces c nodes at level 1.
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The conclusion of this section is that the rule Ω2 defines the sequence |O0|+ 1, {|On|}n≥1

when p is a linear parameter. We remark that the number of objects with size 0 is increased
by one because of the empty tree we add in order to construct the class T wαG . The bijection
between the class of weighted α-trees and the class of objects produced by the object grammar,
O, allows us to translate the ECO construction from the first class to the second one.

Example 4.3.6. Let GD be the grammar for Dyck paths defined in Subsection 4.1.2 and p
be the semi-length of a Dyck path. Then the class of derivation trees of the grammar is in
bijection with the class of weighted (1, 0, 1)-trees with w10 = 0 and w12 = 1. Indeed, the
grammar GD has only one terminal object, with semi-length 0, and one operation φ2 of degree
2, such that p(φ2) = 1 (see Example 4.2.1). The operator ϑ2 determines a construction for
the weighted (1, 0, 1)-trees according to p′ and, consequently, it determines a construction for
D according to p. Figure 4.13 shows the first levels of these constructions. The empty tree
corresponds to an object of size 0 in the class of Dyck paths and it is still represented by ε.
This construction, determined by ϑ2, leads to the following succession rule :

ΩD
2 =





(1)

(1)
0
; (1)

(k)
1
; (2)(3) . . . (k + 1).

The generating function of ΩD
2 is 1+ 1−

√
1−4x

2x , where 1−
√

1−4x
2x defines the sequence of Catalan

numbers.

Example 4.3.7. Let GM be the grammar for Motzkin paths defined in Subsection 4.1.2 and
p be the length of a Motzkin path, then p(.) = 0, p(φ1) = 1, and p(φ2) = 2 (see Example
4.2.2). Therefore the class of derivation trees of the grammar GM is in bijection with the
class of weighted (1, 1, 1)-trees with w10 = 0, w11 = 1, and w12 = 2. The operator ϑ2

determines a construction the class of weighted (1, 1, 1)-trees according to p ′. The first levels
of the construction are depicted in Figure 4.14 and the corresponding succession rule is

ΩM
2 =





(1)

(1)
0
; (2)

(2k)
1
; (2)(4) . . . (2k)
2
; (4)(6) . . . (2k + 2),

already introduced in Example 4.3.1. The generating function of ΩM
2 is 1 + 1−x−

√
1−2x−3x2

2x2

where 1−x−
√

1−2x−3x2

2x2 defines the sequence of Motzkin numbers.
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(1, 1)

(1, 0) (1, 0)

ε

ε

Figure 4.13: The constructions for complete binary trees and for Dyck paths. To simplify,
the labels are depicted only on the first tree. The circles on the objects represent their active
sites.
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(1, 0)

(1, 2)

(1, 0)

ε

(1, 1)

(1, 0)

Figure 4.14: The construction for the class of (1, 1, 1)-trees.
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4.4 The multidimensional case

In this context we need to introduce rules with multiple labels. Similar rules have been
already treated by Guibert [66] for describing permutations with forbidden sequences, and
by Guibert, Pergola, Pinzani [67] to deal with vexillary involutions. A succession rule with
multiple labels Ω is a system ((~a),P), consisting of an axiom (~a) and a set P of productions
or rewriting rules defined on a set of labels Mm ⊂ Nm:

Ω =

{
(~a)

(~k) (e1(~k))(e2(~k)) . . . (ed(~k)(
~k)), for all ~k ∈Mm,

(4.9)

where ~a = (a1, . . . , am) ∈ Mm is a fixed constant, the ei are functions Mm → Mm, and
d is a function Mm → N+ giving the number of elements produced by a label (~k). (These
are therefore analogs of pseudo-succession rules. In this context a natural extension of the
consistency principle of succession rules could be that d(~k) = k1 + · · ·+ km, but it is simpler
not to impose it.)

Let G =
〈
{O1,O2, . . . ,Om},E,Φ,A

〉
be a grammar with dimension m > 1, and p be a

G-linear parameter on G. As for the unidimensional case we introduce a class of weighted
α-trees and a finite parameter p′ on it, such that the number of trees with size n is equal
to |A|n. Finally we determine an ECO-system describing the growth for this class of trees
according to p′.

Passing to the multidimensional case, the definition of weighted α-trees becomes slightly
different with respect to that in Section 4.3, due to the fact that we are dealing with trees
with nodes belonging to m different classes. From now on, without loss of generality, we
suppose that A = O1.

Definition 4.4.1. Let m ∈ N+ and M = {1, . . . ,m}. Let us fix

α : αiw ∈ N, with i ∈M and w ∈M ∗.

A weighted α-tree is a labeled tree whose nodes belong to m different classes. Each node of
class i with l sons of respective classes w1, . . . , wl has a color

k ∈ {(i, 1, uiw(1)), (i, 2, uiw(2)), . . . (i, αiw, u
i
w(αiw))},

where w = w1 . . . wl, and where uiw(j) is the weight associated to the j-th possible color, for
j = 1, . . . , αiw. In particular such a node can exists only if αiw > 0.

Let i ∈ M and w ∈ M ∗. We denote Φi
w, the subset of Φ with operations going from

Ow1 × Ow2 × · · · × Owl to Oi, wj being the j-th letter of w and l being its length. Let TG
be the set of derivation trees of G. There is a simple bijection from TG to T wαG , the set of
weighted α-trees where αiw = |Φi

w| for i ∈ M and w ∈ M ∗, and uiw(j) = p(φiw(j)) for all
j = 1 . . . |Φi

w|. For any T ∈ TG, the corresponding tree T ′ is obtained by replacing each
label φiw(j) in the tree T by the label (i, j, p

(
φiw(j)

)
), and vice versa. In particular we have

that the root of T ′ is obtained by replacing the label φ1
w(j) of the root of T by the label

(1, j, p
(
φ1
w(j)

)
), and vice versa. From the previous assertions we can extend the statements

of Subsection 4.3.2:

Proposition 4.4.1. If G is a complete and unambiguous object grammar generating the class
O, then the function ev : T wαG → O is a bijection.
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Definition 4.4.2. Let T ∈ T wαG . For any x ∈ T denote l(x) = (cl(x), co(x), u(x)) the label
of x. We define

p′(T ) =
∑

x∈T
u(x).

Then, from Proposition 4.4.1, Definition 4.4.2, and Lemma 4.2.1 we obtain the following

Lemma 4.4.1. Let T ∈ T wαG , then p′(T ) = p(ev(T )).

In order to construct the new class T wαG according to p′, we define a new ECO operator
ϑ. This operator is a generalization of the operator ϑ2 introduced in Subsection 4.3.4. To
this purpose, we make the simplifying assumption that for all i ∈ {1, . . . ,m}, there is exactly
one terminal object of class i. In other terms, we assume αiε = 1 for all i ∈ {1, . . . ,m}. This
assumption could be raised but this would require more complicated notations (see however
the discussion at the end of the section).

In all the following definitions the preorder is implicitly assumed on nodes of a tree. Let
T1 denote the tree reduced to one leaf of class 1, which will be our initial tree. Let T ∈ T wαG .
In order to give a new definition of the active sites of T , we introduce the concept of dominant
internal node. We recall that the root vertex of T is of class 1. We define inductively the
sequence of dominant internal nodes of type i = 1, . . . ,m of T : let `0(T ) denote the root of
T .

• For each i = 1, . . . ,m, the dominant internal node `i(T ) of class i is the last internal
node of class i in the subtree rooted at `i−1(T ), if there is such an internal node.
Otherwise `i(T ) = `i−1(T ).

From the notion of dominant internal node we can define the set of active sites of class i:

• The set Li(T ) of active sites of class i consists of all the leaves that are after `i(T ) in the
subtree rooted at `i−1(T ). Observe that |L1(T1)| = 1 and |Li(T1)| = 0 for i = 2, . . . ,m.

Let L(T ) = L1(T ) ∪ . . . ∪ Lm(T ) be the set of active sites of T . The operator ϑ applied
to a tree T produces new trees for each element of the set L. More precisely for each sub-
tree tijw made of one internal node of class i ∈ {1, . . . ,m} with degree type w 6= ε, color
j ∈ {1, . . . , αiw}, and leaves of class given by w, there is an operator ϑijw making the following
operations on T :

• for any active site A ∈ Li of T , ϑijw(T,A) is the tree with A replaced by tijw.

The image of the tree T by the operator ϑ is defined to be the set of all possible trees obtained
in this way. More precisely:

ϑ(T ) = {ϑijw(T,A) | i ∈ {1, . . . ,m}, w ∈ {1, . . . ,m}∗, j ∈ {1, . . . , αiw}, A ∈ Li}.

The rule corresponding to the operator ϑ is then easily written by considering the effect of
the operator ϑijw on the number of active sites of each class: for a tree T , let ki(T ) = |Li(T )|
be the number of active sites of class i of T , and call ~k(T ) = (k1(T ), . . . , km(T )) the identity
of T . Let us moreover denote by |w|i the number of leaves of class i in w. The following
lemma follows from the definition of ϑijw.
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Lemma 4.4.2. Assume T ′ = ϑijw(T,A) where i ∈ {1, . . . ,m}, A ∈ Li(T ) is the l-th active
site of Li(T ), and j ∈ {1, . . . , αiw}. Then

~k(T ′) = (k1(T ) + |w|1, . . . , ki−1(T ) + |w|i−1, l − 1 + |w|i, |w|i+1, . . . , |w|m).

For simplicity we use the following abbreviation for the last formula.

~k(T ′) = (k1(T ), . . . , ki−1(T ), l − 1,~0) + w.

In view of the definition of ϑ, we are led to define the following succession rule

Ω =





(1, 0, . . . , 0)

(k1, . . . , km)
p(ijw)
; ((k1, . . . , ki−1, 0,~0) + w), ((k1, . . . , ki−1, 1,~0) + w), . . .

. . . , ((k1, . . . , ki−1, ki,~0) + w) for all i, j, w

where p(ijw) is the weight p′(tijw) of the tree tijw minus the weight of the leaf of color i,
and there is one production for each possible tree tijw.

Theorem 4.4.1. The system Σ = (T αG , p′, ϑ,Ω) is an ECO-system representing the multidi-
mensional grammar G.

Proof. We must verify that the operator ϑ is an ECO operator. In order to prove
the result we make the following observations: for a tree T ′ ∈ T wαG we look for the larger
index i such that `i(T

′) 6= `i−1(T
′) and we consider `i(T

′). Observe that the sons of `i(T
′)

are all leaves. Indeed, if they were internal nodes, then `i(T
′) could not be the node under

consideration. Now, we want to show that for each T ′ ∈ T wαG there is one tree T ∈ T wαG such
that T ′ ∈ ϑ(T ). This is done by looking for the larger index i such that `i(T

′) 6= `i−1(T
′) and

replacing the corresponding subtree with the only leaf of class i. Observe that `i(T
′), that

was the dominant internal node of type i in T ′, is now an active site of class i, in the new
tree T . It remains to prove that there is only one tree T having T ′ as image. This is easily
deduced by construction. �

The assumption that there is exactly one leaf of each color could be raised at the price of
more complicated notations. For instance, leaves of other colors could be added by creating
for each new color a new class with only leaves (thus increasing m by one). On the other hand
the assumption that there are leaves of each class can always be dealt with by adding fake
leaves: upon marking them in the generating functions, the contribution of generation trees
without fake leaves would then be easily recovered. The case of directed convex polyominoes
of next section illustrates explicitely another possible approach, without fake leaves, for a case
with α2

ε = 0.

4.5 A multidimensional case: directed convex polyominoes

Now we focus on the class of weighted α-trees associated with the grammar for directed convex
polyominoes introduced in Subsection 4.1.2. In view of what we said above, we slightly change
the notations for such a grammar and we obtain the following

GP =< {P1,P2,P3}, {{φ1
ε}, ∅, {φ3

ε}}, {φ1
1, φ

1
31, φ

1
2, φ

2
1, φ

2
2, φ

2
32, φ

3
3(1), φ

3
3(2), φ

3
33},P1 >,
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= + + +
φ1

ε

φ1
1

φ1
31

φ1
2

= + +

φ2
1

φ2
2

φ2
32

=
φ3

ε

φ3
3(1) φ3

3(2)

φ3
33

+ ++

Figure 4.15: The grammar for convex directed polyominoes.

where P1 is the class of directed convex polyominoes, P 2 is the class of directed convex
polyominoes with one marked cell in their last column, and P 3 is the class of parallelogram
polyominoes. The operations of the grammar are depicted in Figure 4.15. Thus we have

|Φ1
ε| = 1 |Φ1

1| = 1 |Φ1
31| = 1 |Φ1

2| = 1

|Φ2
1| = 1 |Φ2

2| = 1 |Φ2
32| = 1

|Φ3
ε| = 1 |Φ3

3| = 2 |Φ3
33| = 1

(4.10)

and, for each other set Φi
w, with i ∈ {1, 2, 3} and w ∈ {1, 2, 3}∗, |Φi

w| = 0. Let us take
the semi-perimeter as a parameter p on the classes P 1, P2, and P3. Then p is a GP -linear
parameter, where

p(φ1
ε) = 2 p(φ1

1) = 1 p(φ1
2) = 1 p(φ1

31) = 0

p(φ2
1) = 0 p(φ2

2) = 1 p(φ2
32) = 0

p(φ3
ε) = 2 p(φ3

3(1)) = 1 p(φ3
3(2)) = 1 p(φ3

33) = 0.

(4.11)

From the previous observations we deduce that, the class T wαGP
of weighted α-trees associ-

ated with the grammar GP , has nodes with 3 different classes, and root of class 1. Moreover
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(1,1,1)

(2,1,0)

(1,1,2)

(1,1,1)

(3,2,1)

(2,1,0)

(3,1,0)

(3,1,1)

(1,1,0)

(3,1,2)(3,1,2)

(1,1,1)

(2,1,1)

(2,1,0)

(3,1,2)

Figure 4.16: A tree belonging to T wαGP
.

α1
ε = 1 α1

1 = 1 α1
31 = 1 α1

2 = 1

α2
1 = 1 α2

2 = 1 α2
32 = 1

α3
ε = 1 α3

3 = 2 α3
33 = 1,

(4.12)

with αiw = 0 for each other i ∈ {1, 2, 3} and w ∈ {1, 2, 3}∗ . In the columns of table (4.13) we
represent the labels that a node can have depending on the classes of its sons.

ε 1 2 3 31 32 33

(1, 1, 2) (1, 1, 1) (1, 1, 1) (3, 1, 1) (1, 1, 0) (2, 1, 0) (3, 1, 0)

(3, 1, 2) (2, 1, 0) (2, 1, 1) (3, 2, 1)
(4.13)

For instance a node with one son of class 1 can be labeled (1, 1, 1) or (2, 1, 0). In Figure 4.16
is represented a tree of the class T wαGP

.
Now, we want to determine an ECO construction for the class T wαGP

according to the
parameter p′ (see Definition 4.4.2). Let us denote li the last internal node of a tree in preorder
traversal. We shall distinguish five subsets of T wαGP

depending on f(li), the number of leaves
following li, and depending on the class of li. Observe that by definition, li is not a leaf.

i) f(li) = 1: Observe that li cannot be of class 3. Consequently the only leaf following li
is of class 1 (therefore it is equal to (1, 1, 2)).
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D

(1,1,1)

(2,1,0)

C

(2,1,1)

(2,1,0)

(1,1,2)

(1,1,1)

(1,1,1)

A (1,1,0)

(3,1,2) (1,1,1)

(1,1,2)

(3,1,0)

(1,1,0)

(1,1,2)

(1,1,1)

(3,1,2)(3,1,2) (3,1,2)

E

(1,1,2)

(1,1,0)

(1,1,2)

(3,1,0)

(3,1,2)

(2,1,0)

(2,1,0)

B

(3,1,0)

(3,1,2)(3,1,2)

Figure 4.17: Some trees belonging to T wαGP
.

- li is of class 1 with one son of class 1 (li = (1, 1, 1)): this set of trees is denoted A.
Observe that the other type of node of class 1 with one son cannot appear as last
internal node since its son is of class 2.

- li is of class 2 with one son of class 1 (li = (2, 1, 0)): Observe that the other type
of node of class 2 with one son cannot appear as last internal node since its son is
of class 2.

- the father of li is of class 1 with one son of class 2 (therefore it is equal to
(1, 1, 1)): this set of trees is denoted B. Observe that the other types of node
of class 1 cannot be the father of the last internal node.

- the father of li is of class 2 and it has one son of class 2 (therefore it is equal
to (2, 1, 1)): this set of trees is denoted C.

- the father of li is of class 2 and it has two sons of classes 32 (therefore it is
equal to (2, 1, 0)): this set of trees is denoted E.
Observe that the last type of a node of class 2 cannot appear as the father of
li since its son is of class 1. Moreover, observe that the father of li cannot be
of class 3.

ii) f(li) > 1: this set of trees is denoted D. Observe that the last leaf following li is of
class 1, and all the other ones are of class 3. Moreover, observe that li can be of class 1
or 3.

In Figure 4.17 there is an example of tree for each set described above. Observe that the
trivial tree (1, 1, 2) does not belong to the classes defined above. From the previous assertions
we deduce that

Lemma 4.5.1. The family of sets {A,B,C,D,E} ∪ {(1, 1, 2)} is a partition of T wαGP
.
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(2,1,0)

(1,1,1)

(1,1,1)

(1,1,2)

(1,1,1)

(1,1,0)

(3,1,2) (1,1,2)

(1,1,1)

(1,1,1)

(1,1,2)

(1,1,2)

(1,1,1)

ϑ

Figure 4.18: The operator ϑ on a tree belonging to A.

4.5.1 An ECO construction for the generic derivation trees of the grammar

for directed convex polyominoes

Let T αn be the set of trees belonging to T wαGP
with p′ = n, and ϑ an operator from T αn to

2T
α
n+1∪T αn+2 , performing the following transformations on T ∈ T αn :

a) T is the leaf (1, 1, 2) or T belongs to A (see Figure 4.18). Let us call L the only leaf
following li. If T = (1, 1, 2) then L = (1, 1, 2). Then we have the following:

i) ϑ produces a tree with 1 new son, with label (1, 1, 2), attached to L. Thus L
becomes an internal node with a son of class 1 and it is labeled (1, 1, 1). The new
tree belongs to A and the parameter p′ increases by one.

ii) ϑ substitutes L with the tree ((1, 1, 1), ((2, 1, 0), (1, 1, 2))). The new tree obtained
through ϑ belongs to B, and the parameter p′ increases by one.

iii) ϑ produces a tree with 2 new sons attached to L. The label of the left son is (3, 1, 2)
and that of the right one is (1, 1, 2). Thus L becomes an internal node with two
sons (of classes 31) and it is labeled (1, 1, 0). The new tree belongs to D and the
parameter p′ increases by two.

b) T belongs to B (see Figure 4.19). Then ϑ makes the operations i), ii), iii) of point
a), obtaining three new trees belonging to A, B, and D. Moreover it makes a further
operation on li:
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(1,1,2)

(2,1,0)

(1,1,1) (2,1,0)

(1,1,1)

(2,1,0)

(1,1,1)

(1,1,2)

(1,1,1)

(1,1,1)

(1,1,2)

(2,1,1)

(1,1,1)

(1,1,2)

(2,1,0)

(2,1,0)

(2,1,0)

(1,1,0)

(3,1,2) (1,1,2)

(1,1,1)

ϑ

Figure 4.19: The operator ϑ on a tree belonging to B.
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(3,1,2)

(2,1,1)

(1,1,1)

(1,1,2)

(2,1,0)

(2,1,0)

(1,1,2)

(1,1,0)

(3,1,2) (1,1,2)

(1,1,1)

(2,1,1)

(2,1,0)

(2,1,1)

(2,1,1)

(1,1,1)

(2,1,0)

(1,1,2)

(2,1,1)

(1,1,1)

(2,1,0)

(1,1,2)

(2,1,1)

(1,1,1)

(1,1,1)
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ϑ

Figure 4.20: The operator ϑ on a tree belonging to C.

iv) ϑ substitutes li with the tree ((2, 1, 1), (2, 1, 0)). The new tree obtained through ϑ
belongs to C and the parameter p′ increases by one.

c) T belongs to C (see Figure 4.20). Then ϑ makes the operations i), ii), iii), iv) described
in point a) and in point b). The trees obtained belong to the classes A, B, C, and D.
Moreover ϑ makes a further operation on the father F of li:

v) it attaches a left son labeled (3, 1, 2) to F . Thus F becomes a node with two sons
(of classes 32) and it has label (2, 1, 0). The tree obtained belongs to E and the
parameter p′ increases by one.

d) T belongs to D (see Figure 4.21). Then ϑ makes operations i), ii), iii) on the last
leaf following li, obtaining three trees belonging to A, B, and D. Moreover it makes a
further operation on each leaf L following li, except for the last one:
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(1,1,0)

(3,1,2)

(3,1,0)

(3,1,2) (3,1,1)

(1,1,0)

(3,1,2) (1,1,2)

(1,1,0)

(1,1,2)(3,1,0)

(3,1,2) (3,1,1)

(3,1,0)

(3,1,2) (3,1,2)

(1,1,0)

(1,1,2)(3,1,0)

(3,1,2) (3,1,1)

(3,1,2)

(3,1,2)

(3,1,0)

(3,1,2) (3,1,1)

(1,1,1)

(3,2,1)

(1,1,2)

(1,1,0)

(3,1,2)

(3,1,2)

(3,1,1)

(1,1,1)

(1,1,0)

(2,1,0)

(1,1,2)

(1,1,0)

(1,1,2)

(3,1,1)(3,1,2)

(3,1,0)

(3,1,2)

(3,1,0)

(1,1,0)

(3,1,0)

(3,1,2) (3,1,1)

(1,1,2)

(3,1,2)

(3,1,1)

ϑ

Figure 4.21: The operator ϑ on a tree belonging to D.
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vi) for i ∈ {1, 2}, ϑ attaches i new sons labeled (3, 1, 2) to L. At this stage L is an
internal node with i sons of class 3. If i = 1 then L can be labeled in 2 ways
((3, 1, 1) or (3, 2, 1)) otherwise it is labeled (3, 1, 0).

The new trees obtained still belong to D and the parameter p′ increases by one when
i = 1, otherwise it increases by two. To conclude, let k + 1 be the number of leaves
following li. Thus ϑ produces 3 trees of type A, B, and D, among which that of type D
is produced 2 levels below. Moreover ϑ produces 2k trees of type D lying 1 level below,
and k trees of type D lying 2 levels below.

e) T belongs to E (see Figure 4.22). Then ϑ makes operations i), ii), iii), and iv) on the
only leaf following li, obtaining trees belonging to A, B, C, and D. Moreover it makes
operation vi) on each leaf following the last but one internal node, except for the last
one. In this case, the new trees obtained still belong to E. Finally, if k+1 is the number
of leaves following the last but one internal node in preorder traversal, then ϑ produces
4 trees of type A, B, C, and D, among which that of type D is produced 2 levels below.
Moreover ϑ produces 2k trees of type E lying 1 level below, and k trees of type E lying
2 levels below.

In Figure 4.23 are represented the first levels of the generating tree of the operator ϑ. For
simplicity at level 3 has been developed only one tree.

Theorem 4.5.1. The system Σ =
(
T αGP

, p′, ϑ,Ω
)

is an ECO-system, where:

Ω =





(3)a

(3)a
1
; (3)a(4)b
2
; (6)d

(4)b
1
; (3)a(4)b(5)c
2
; (6)d

(5)c
1
; (3)a(4)b(5)c(7)e
2
; (6)d

(3k + 3)d
1
; (3)a(4)b
2
; (6)d
1
; (6)2d . . . (3k + 3)2d
2
; (6 + 3)d . . . (3(k + 1) + 3)d

(3k + 4)e
1
; (3)a(4)b(5)c
2
; (6)d
1
; (3 + 4)2e . . . (3k + 4)2e
2
; (6 + 4)e . . . (3(k + 1) + 4))e
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(1,1,2)(3,1,2)

(1,1,2)

(2,1,0)

(2,1,0)

(1,1,1)

(2,1,1)(3,1,2)(1,1,1)
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(2,1,0)
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(2,1,0)

(1,1,2)
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(1,1,1)

(2,1,0)(3,2,1)

(3,1,2)
(1,1,1)

(1,1,1)

(3,1,2)

(2,1,0)

(1,1,1)

(2,1,0)

(3,1,2)

(1,1,1)
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(1,1,2)

(2,1,0)

(1,1,0)

(2,1,0)

(3,1,2) (1,1,2)

(2,1,0)

(2,1,0)

(1,1,1)

(2,1,0)

(1,1,2)

(2,1,0)(3,1,0)

(3,1,2) (3,1,2)

(1,1,2)

(2,1,0)

(3,1,2)

(1,1,1)

ϑ

Figure 4.22: The operator ϑ on a tree belonging to E.
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4
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(1,1,1)

(2,1,0)

210

(1,1,2)

(2,1,0)

(1,1,1)

(1,1,2)

(1,1,1)

(2,1,1)

3

(2,1,0)

(1,1,2)

(1,1,1)

(1,1,2)

(2,1,0)

(1,1,1)

(1,1,1)

(2,1,1)

(1,1,2)

(2,1,0)

(1,1,1)

(2,1,1)

(2,1,0)

(1,1,2)

(1,1,1)

(2,1,1)

(1,1,0)

(2,1,0)

(3,1,2) (2,1,0)

(1,1,1)

(1,1,2)

(1,1,2)

(1,1,1)

(1,1,1)
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(1,1,1)

ϑ

Figure 4.23: The first levels of the generating tree of ϑ.
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Proof. The operator ϑ satisfies the conditions of Proposition 4.3.1.

1. for each T ′ ∈ T αn there is T ∈ ∪2
j=1T αn−j such that T ′ ∈ ϑ(T ). Let li be the last internal

node of T ′. We distinguish the following cases:

a) T ′ belongs to A. Then T is obtained by replacing the subtree (of T ′) of root li
with the leaf (1, 1, 2).

b) T ′ belongs to B. Then T is obtained by replacing the subtree whose root is the
father of li, with the leaf (1, 1, 2).

c) T ′ belongs to C. Then T is obtained by replacing the subtree whose root is the
father of li with the tree ((2, 1, 0)(1, 1, 2)).

d) T ′ belongs to D. Then we must distinguish two cases:

- li is a node of class 1 with two sons, i.e. (1, 1, 0). Then T is obtained by
replacing the subtree of root li with the leaf (1, 1, 2).

- li is a node of class 3. Then T is obtained by replacing the subtree of root li
with the leaf (3, 1, 2).

e) T ′ belongs to E. Then we must distinguish two cases:

- the last but one internal node is a node of class 2 with two sons, i.e. (2, 1, 0).
Then T is obtained by replacing the subtree whose root is the last but one
internal node, with the tree ((2, 1, 1), ((2, 1, 0)(1, 1, 2))).

- the last but one internal node is a node of class 3. Then T is obtained by
replacing the subtree whose root is the last but one internal node, with the
leaf (3, 1, 2).

2. for each T ∈ T αn , T ′ ∈ T αm such that T 6= T ′, ϑ(T ) ∩ ϑ(T ′) = ∅. This can be easily
deduced from the construction.

�

Remark 4.5.1. In this case we do not need to introduce multiple labels in the style of Section
4.4. Indeed, there are only active sites of class 1 and 3, and we know that there is only one
active site of class 1 and it is the last leaf following the last internal node in preorder traversal.

Finally, we bijectively proved that the growth of the class of T wαGP
according to p′ is

described by Ω. In order to give an analytical proof of this fact we calculate the generating
function fΩ(x) =

∑
n≥0 fnx

n of Ω. Let fB(x), fC(x), fD(x), and fE(x) be the generating
functions of the rules with the same productions of Ω but with different axioms, respectively
(4)b, (5)c, (6)d, and (7)e. Let us moreover denote by fA(x) the generating function of fΩ(x).
From rule Ω we obtain the following equations:

fA(x) = 1 + xfA(x) + xfB(x) + x2fD(x)

fB(x) = 1 + xfA(x) + xfB(x) + xfC(x) + x2fD(x)

fC(x) = 1 + xfA(x) + xfB(x) + xfC(x) + x2fD(x) + xfE(x)

fD(x) = fDd(x) + xfDd(x)(fA(x) + fB(x))

fE(x) = fEe(x) + xfEe(x)(fA(x) + fB(x) + fC(x)) + x2fEe(x)fD(x),

(4.14)
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where fDd(x) and fEe(x) are the generating functions of the rules

Ωd =





(3k + 3)d
2
; (6)d
1
; (6)2d . . . (3k + 3)2d
2
; (6 + 3)d . . . (3(k + 1) + 3)d

Ωe =

{
(3k + 4)e

1
; (3 + 4)2e . . . (3k + 4)2e
2
; (6 + 4)e . . . (3(k + 1) + 4))e,

describing two subsets of the nodes of rule Ω, respectively the subset of nodes with labels of
type d and that one of nodes with label of type e. Now let fdn (resp. fen) be the number
of nodes at level n of the generating tree of Ωd(resp. Ωe) and let fdn,k (resp. fen,k) be the
number of nodes at level n having label k. Then

fDd(x) =
∑

n≥0

fdnx
n and fDd(x, y) =

∑

n≥0,k≥1

fdn,kx
nyk,

and

fEe(x) =
∑

n≥0

fenx
n and fEe(x, y) =

∑

n≥0,k≥1

fen,kx
nyk.

Thus we have fDd(x) = fDd(x, 1), where fDd(x, y) satisfies the following recurrence

fDd(x, y) = y +
2xy + x2y

1− y fDd(x, 1)−
2xy + x2y2

1− y fDd(x, y).

By using kernel method we obtain

fDd(x, 1) =
y0(x)− 1

2x+ x2
(4.15)

where

y0(x) =
1− 2x−

√
1− 4x

2x2
.

A similar result holds for fEe(x, 1),

fEe(x, y) = y +
2xy + x2y2

1− y fEe(x, 1)−
2xy + x2y2

1− y fDd(x, y).

By applying kernel method we obtain that

fDd(x, 1) =
y0(x)− 1

2x+ x2y
. (4.16)

Thus, by solving the system (4.14), we have

fΩ(x) = fA(x) =
1√

1− 4x
,

and

fP = x2fΩ(x) =
x2

√
1− 4x

,

where fP is the well-known generating function for directed convex polyominoes according
to the semi-perimeter.
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A variant of the ECO construction

The ECO construction for the class T wαG is a natural extension of the construction for the
multidimensional case (see Section 4.4). Indeed each leaf is developed by adding 1 or 2
sons to it, following the general idea introduced for the multidimensional case. Nevertheless,
the operator ϑ makes further operations on the trees of T wαG (see operations ii), iv), v) in
Subsection 4.5.1), due to the absence of the terminal object of class 2. In particular, the
operation v) transforms a node of degree one in a node of degree two, by adding a left son
to it. This operation does not produce a jump in the corresponding succession rule, since
the parameter p′ increases only by one. However, nodes of degree two and of class 1 or 3
are obtained by adding two sons on a leaf. This operation produces a jump of length two
on the corresponding succession rule (see operations iii) and vi)). Hereafter, we present a
slight variant of the construction described in Subsection 4.5.1. The main idea is to produce
each node of degree two by adding a left son to a node of degree one, as in v). The new
construction leads to a succession rule without jumps. In order to describe the new ECO
construction, we need to partition the sets D and E introduced in Section 4.5:

• D1 is the subset of D with trees having the last internal node of degree one and label
(3, 1, 1). D2 is the complement of D1.

• E1 is the subset of E with trees having the last but one internal node of degree one and
label (3, 1, 1). E2 is the complement of E1.

Let ϑ′ be an operator from T αn to 2T
α
n+1 , performing the following transformations on

T ∈ T αn :

a) If T belongs to A or T = (1, 1, 2), then ϑ makes the operations i), ii) described in
Subsection 4.5.1, obtaining two trees belonging to A and B. Moreover, if T 6= (1, 1, 2),
it makes a further operation on li:

1. it attaches a left son labeled (3, 1, 2) to li. Thus li becomes a node with two sons (of
classes 31) and it has label (1, 1, 0). The new tree belongs to D2 and the parameter
p′ increases by one.

b) If T belongs to B then ϑ makes the operations i), ii), iv), obtaining trees belonging to
A, B, and C.

c) If T belongs to C then ϑ makes the operations i), ii), iv), and v), obtaining four trees
belonging to A, B, C, and E2.

d1) If T belongs to D1 then ϑ makes the operations i), and ii) on the last leaf following the
last internal node. The new trees belong respectively to A and B. Moreover, ϑ makes
a further operation on each leaf L following the last internal node, except for the last
one:

2. it attaches 1 son labeled (3, 1, 2) to L. At this stage L is an internal node with 1
son of class 3. Thus L can be labeled (3, 1, 1) or (3, 2, 1). In the first case, the new
tree belongs to D1, in the second one it belongs to D2.

Finally, ϑ makes another operation on the last internal node of T :
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3. it attaches a left son labeled (3, 1, 2) to li. Thus li becomes a node with two sons (of
classes 33) and it has label (3, 1, 0). The new tree belongs to D2 and the parameter
p′ increases by one.

Let k be the number of leaves following the last internal node of T , except for the last
one. Observe that the operator ϑ produces two trees belonging to A and B, k trees
belonging to D1, and k + 1 trees belonging to D2.

d2 If T belongs to D2 then ϑ makes the operations i), ii), and 2., obtaining trees belonging
to A, B, D1, and D2. In this case, ϑ produces two trees belonging to A and B, k trees
belonging to D1, and k trees belonging to D2.

e1 If T belongs to E1 then ϑ makes the operations i), ii), iv) on the last leaf following the
last but one internal node of T . The new trees belong respectively to A, B, and C .
Moreover ϑ makes the operation 2. for each leaf following the last but one internal node,
except for the last one. Let k be the number of these leaves, then ϑ produces k trees
belonging to E1 and k trees belonging to E2. Finally it makes the operation 3. on the
last but one internal node, obtaining a tree belonging to E2.

e2 If T belongs to E2 then ϑ makes the operations i), ii), iv), and 2.. Thus it obtains three
trees belonging to A, B, and C, k trees belonging to E1, and k trees belonging to E2.

From the previous observation we can deduce that the ECO construction by means of θ ′

can be encoded by the following succession rule without jumps:

Ω′ =





(2)a

(2)a;(3)a(3)b

(3)a;(3)a(3)b(4)d2

(3)b;(3)a(3)b(4)c

(4)c;(3)a(3)b(4)c(5)e2

(2k + 3)d1;(3)a(3)b(4)d2(5)d1 . . . (2k + 2)d2(2k + 3)d1(2k + 4)d2

(2k + 2)d2;(3)a(3)b(4)d2(5)d1 . . . (2k + 2)d2(2k + 3)d1

(2k + 4)e1;(3)a(3)b(4)c(5)e2(6)e1 . . . (2k + 3)e2(2k + 4)e1(2k + 5)e2

(2k + 3)e2;(3)a(3)b(4)c(5)e2(6)e1 . . . (2k + 3)e2(2k + 4)e1 .
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(2,1,1)
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(2,1,0)
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(1,1,1)

(1,1,1)
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(2,1,0)

(1,1,2)

(1,1,1)

(1,1,1)

3

(2,1,1)
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(1,1,2)

(1,1,1)

(2,1,0)
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(1,1,1)

(1,1,1)

(2,1,0)

(1,1,2)

(1,1,1)

(2,1,0)

(2,1,1)

(2,1,0)

(1,1,2)

(1,1,1)

(2,1,1)

(1,1,0)

(3,1,2) (1,1,2)

(1,1,2)

(2,1,0)

(1,1,1)

(2,1,0)

(1,1,1)

(1,1,2)

(1,1,1)

(2,1,1)

(1,1,2)

(2,1,0)

(1,1,1)

(1,1,1)

(1,1,0)

(1,1,2)

(3,1,2) (1,1,2)

(2,1,0)

(3,1,2)

(1,1,1)

(1,1,1)

(2,1,0)

(1,1,0)

(3,1,2) (1,1,2)

ϑ′

Figure 4.24: The first levels of the generating tree of ϑ.



Chapter 5

Extension to q-parameters

Now we turn to the enumeration with respect to q-parameters, that is with respect to area
or generalizations thereof. The problem of counting objects according to q-parameters was
first considered by MacMahon [74] (see for instance Delest et al. [32], Denise and Simion [35],
Bousquet-Mélou [13], Duchon [40] for a more recent work). Here we deal with q-parameters in
the context of object grammars and of the ECO method. A contribute on q-enumeration by
using object grammars has been given by Dutour in [44], where she presents an extension of
the method introduced by Prellberg and Brak in [81] for solving some particular q-equations.
Moreover she provides some examples of q-enumeration by using object grammars and apply
this method to solve the q-equations arising from these. A further contribute on q-enumeration
in the context of object grammars has been given by Barcucci, Del Lungo, Fédou, and Pinzani
in [3]. A different approach has been proposed by Barcucci, Del Lungo, Pergola, and Pinzani
in [7], where they use ECO method in order to give a combinatorial interpretation of some
q-analogs of Schröder numbers.

The main result of Chapter 4 is a transfer theorem from object grammars to ECO-systems
according to linear parameters. In this chapter we shall consider q-parameters in the case
of unidimensional grammars. In particular, given an unidimensional grammar G, we define
a class of q-parameters on G, called natural q-parameters, and we transport them in the
corresponding ECO-system. In order to do it we introduce the concept of parametrized
succession rules. The functional equations arising from these rules are solved by using the
following lemma, introduced in [13] by Bousquet-Mélou. The lemma is obtained by iteration
of the initial equation. We denote by f(s) any series of the form f(s, t, x, y, q).

Lemma 5.0.2 (Bousquet-Mélou). Let R[[s, t, x, y, q]] be the algebra of formal power series
in the variables s, t, x, y, q with real coefficients. Let A be the sub-algebra of R[[s, t, x, y, q]]
such that the series converge for s = 1. Given A(s, t, x, y, q) a formal power series in A, we
suppose that:

A(s) = xe(s) + xf(s)A(1) + xg(s)A(sq),

where e(s), f(s), g(s) are some given power series in A. Then

A(s) =
E(s) +E(1)F (s) −E(s)F (1)

1− F (1)
,

where
E(s) =

∑

n≥0

xn+1g(s)g(sq) . . . g(sqn−1)e(sqn)

101
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and
F (s) =

∑

n≥0

xn+1g(s)g(sq) . . . g(sqn−1)f(sqn).

The chapter is organised as follows. We start by giving the definition of parametrized
succession rules. In Section 5.2 we introduce the concept of natural q-parameters on an object
grammar. Then we show how to transport this kind of parameters from an unidimensional
object grammar to an ECO-system. In Section 5.3 we present some examples and applications.
In Section 5.4 we give an example of the usefulness of knowing an ECO construction associated
with an object grammar. In particular, we show how such a construction for a particular class
of paths is extendable to another class more difficult to deal with.

5.1 Parametrized succession rules

Let Σ = (O, p, ϑ,Ωϑ) be an ECO system. Let us consider other parameters p1, . . . , ph ,
h ∈ N+, on the class O. A parametrized succession rule describes the variations of such
parameters through ϑ. It has the following form:

Ω =





(a, a1, . . . , ah)

(k, p1, . . . , ph) (e1(k), t
1
1(k, p1, . . . , ph), . . . , t

h
1(k, p1, . . . , ph))

(e2(k), t
1
2(k, p1, . . . , ph), . . . , t

h
2(k, p1, . . . , ph))

...

(ek(k), t
1
k(k, p1, . . . , ph), . . . , t

h
k(k, p1, . . . , ph)),

for k ∈M, (p1, . . . , ph) ∈ Nh,

(5.1)

where the set of labels is M ⊆ N+, a is a constant in M , and the tji are functions M×Nh → N,
for all i, j.

Example 5.1.1. Let D be the class of Dyck paths and a be the area of a path defined as in
Section 1. Let ϑ be the operator of Example 1.3.1. In Figure 5.1 is represented the variation
of the area when the operator acts on the active site at level i. We can encode such a variation

i

D

a(D)

ϑ(D)

a(D) + i+ 1

Figure 5.1: The variation of the area through the operator ϑ.

in the parametrized succession rule
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(1, 0)

(2, 1)

(2, 2) (3, 3)

(4, 6)(3, 5)(2, 4)(3, 4)(2, 3)

(2, 4) (3, 5) (2, 5) (3, 6) (4, 7) (2, 5) (3, 6) (4, 8) (2, 7) (3, 8) (4, 9) (5, 10)(3, 7)(2, 6)

Figure 5.2: The first levels of Γ′.

Γ′ =





(1, 0)
(1, 0) (2, 1)
(k, a) (2, a+ 1) . . . (k, a+ k − 1)(k + 1, a + k)

whose first levels of the generating tree are depicted in Figure 5.2.

5.2 Natural q-parameters on an object grammar

We focus on a particular type of q-parameter that we call natural q-parameter. Then we
transport this kind of parameter from unidimensional object grammars to ECO-systems.

Definition 5.2.1. Let G = 〈O,E,Φ,A〉 be an object grammar. Let O,O i ∈ O for i = 1 . . . k
and q be a parameter on O,O1, . . . , Ok. Let φ ∈ Φ be an object operation such that
dom(φ) = O1 × . . . × Ok and cod(φ) = O. Then q is a natural q-parameter with respect
to φ if, for all (O1, . . . , Ok) ∈ dom(φ),

q (φ(O1, . . . , Ok)) =

k∑

i=1

q(Oi) +

k∑

i=1

(k − i)t(Oi) + q(φ),

where i ∈ N+, q(φ) ∈ N, and t is a G-linear parameter on the grammar G.

Let G be an unidimensional object grammar, p be a G-linear parameter, and q be a natural
G-q-linear parameter with associated G-linear parameter t. Here, in order to deal with q-
parameters, we naturally extend the Definition 4.3.1 of weighted α-trees, by considering trees
with labels of the form (i, wij , w

′
ij , w

′′
ij). Then we extend the bijection in Subsection 4.3.2,

between derivation trees and weighted α-trees, by taking w ′
ij = q(φij) and w′′

ij = t(φij), for
i = 1 . . . |Φj | and j = 0 . . . d.
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Definition 5.2.2. Let T ∈ T wαG . For any x ∈ T denote l(x) = (co(x), w(x), w′(x), w′′(x))
the label of x. Then

q′(T ) =
∑

x∈T



k(x)∑

i=1

(k(x) − i)
∑

y∈Ti,x
w′′(y) + w′(x)




and
t′(T ) =

∑

x∈T
w′′(x).

From Definition 5.2.2 and from (4.5) we obtain the following Lemma:

Lemma 5.2.1. Let T ∈ T wαG , then q′(T ) = q(ev(T )).

Let us consider the ECO operator ϑ2 defined in Subsection 4.3.4 for the class of weighted
α-trees associated with G. We want to give a parametrized succession rule describing the
variation of the parameter q through ϑ2. Let T ′ be the tree obtained through ϑ2 by adding
a tree S on the l-th active site A of T . Then we have the following lemma:

Lemma 5.2.2.

q′(T ′)− q′(T ) = (l − 1)(t′(S)− w′′(A)) + q(S)− w′(A)

Proof. Let b be the branch from the root of T to the father of its l-th active site A.
Because of the definition of ϑ2, only the subtrees of T having their root in b change through
ϑ2. Observe that b is also the branch from the root of T ′ to the father of the root of S. Thus
we have

q′(T ′)− q′(T ) =
∑

x∈b∪S

(∑k(x)
i=1 (k(x)− i)∑y∈T ′

i,x
w′′(y) + w′(x)

)
−

∑
x∈b∪{A}

(∑k(x)
i=1 (k(x)− i)∑y∈Ti,x

w′′(y) + w′(x)
)

=
∑

x∈b

∑k(x)
i=1 (k(x)− i)

(∑
y∈T ′

i,x
w′′(y) − ∑

y∈Ti,x
w′′(y)

)
+ q′(S)− w′(A).

For x in b, let i(x) be the index of the subtree Ti,x that contains A. Since only the subtrees
containing A change, we have T ′

i,x = Ti,x for i 6= i(x) and T ′
i(x),x = Ti(x),x \ {A} ∪ S. Hence

q′(T ′)− q′(T ) =
∑

x∈b

(k(x) − i(x))


 ∑

y∈T ′
i(x),x

w′′(y) −
∑

y∈Ti(x),x

w′′(y)


+ q′(S)− w′(A),

=
∑

x∈b

(k(x) − i(x))


∑

y∈S

w′′(y) − w′′(A)


+ q′(S)− w′(A).

Since A is an active site, the sons of x with index larger than i(x) are then active sites: the
number of active sites attached to x is k(x)− i(x). Moreover A is the l-th active site, hence

q′(T ′)− q′(T ) = (l − 1)


∑

y∈S

w′′(y) − w′′(A)


+ q′(S)− w′(A)

= (l − 1)(t′(S)− w′′(A)) + q′(S)− w′(A).
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Thus we have that

q′(T ′) = q′(T ) + (l − 1)(t′(S)− w′′(A)) + q′(S)− w′(A). (5.2)

�

Now, in the application ϑ2, S is a tree made of a root and j leaves, the rightmost
of these being A, for j = 1 . . . d. More precisely, S is associated to a derivation tree
(φ
ij
j , (φ

i0,1
0 , . . . , φ

i0,j−1

0 , A)). Therefore, in terms of the φ, equation (5.2) becomes

q′(T ′) = q′(T ) + (l − 1)

(
t(φ

ij
j ) +

j−1∑

r=1

t(φ
i0,r
0 )

)
+

j−1∑

r=1

(j − r)t(φi0,r0 ) + q(φ
ij
j ) +

j−1∑

r=1

q(φ
i0,r
0 ).

(5.3)

Let us denote

R(S) = t(φ
ij
j ) +

j−1∑

r=1

t(φ
i0,r
0 ) and Q(S) =

j−1∑

r=1

(j − r)t(φi0,r0 ) + q(φ
ij
j ) +

j−1∑

r=1

q(φ
i0,r
0 ),

then
q′(T ′) = q′(T ) + (l − 1)R(S) +Q(S).

Now we have the variation of the parameter q when the operator ϑ2 attaches j leaves on the
l-th active site. Therefore we can extend the succession rule Ω2 (see Subsection 4.3.4) to a
parametrized succession rule depending also on the parameter q. Observe that the axiom of
Ω2 corresponds to the empty tree, therefore in this case q is equal to 0. Then we obtain the
following:

Ωq
2 =





(α0, 0)

(α0, 0)
p(φ

i0
0 )
 (c, q(φi0

0 ))

(kc, q)
P (S)
 (jc, q +Q(S)) ((j + 1)c, q +Q(S) +R(S)) . . . ((k + j − 1)c, q +Q(S) + (k − 1)R(S))

where there is a production for each tree S corresponding to a derivation tree (φ
ij
j , (φ

i0,1
0 , . . . , φ

i0,j−1

0 ,
A)) with j = 1 . . . d, ij = 1 . . . αj, and i0,r = 1 . . . α0, and where

P (S) = p(φ
ij
j ) +

∑j−1
r=1 p(φ

i0,r
0 ),

R(S) = t(φ
ij
j ) +

∑j−1
r=1 t(φ

i0,r
0 ), and

Q(S) =
∑j−1

r=1(j − r)t(φ
i0,r
0 ) + q(φ

ij
j ) +

∑j−1
r=1 q(φ

i0,r
0 ).

5.3 Examples and applications.

5.3.1 The h-coloured plane trees.

An h-coloured plane tree has h possible colours on its leaves, with h ∈ N+. An exception is
the tree made up by one node, which is not coloured. Let Th be the class of h-coloured plane
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,

φi1

φ2

i = 1 . . . h

i

Figure 5.3: The operations, φi1, φ2 of the grammar GTh .

trees. We want to enumerate Th according to the internal path length, defined in Section 1.
The mappings φi1 and φ2, illustrated in Figure 5.3, are object operations on Th. For i = 1 . . . h
we have:

- operation φi1 takes a plane tree and it attaches a i-coloured leaf as the leftmost son of
the root of such a tree;

- operation φ2 takes a pair of plane trees as its argument, it attaches the first one as the
leftmost son of the root of the second one.

The class Th is generated by the unidimensional object grammar

GTh =
〈
{Th}, {{.}}, {φi1 , φ2}

〉

where i = 1 . . . h and the terminal object is the tree with only one node. Let n denote the
number of nodes of a given h-coloured tree and s denote its internal path length. Then s is a
natural q-parameter with respect to the operation φ2. Indeed, given T1, T2 ∈ Th, we have the
following:

n(.) = 1 n(φi1(T1)) = n(T1) + 1 n(φ2(T1, T2)) = n(T1) + n(T2)

s(.) = 0 s(φi1(T1)) = s(T1) + 1 s(φ2(T1, T2)) = s(T1) + s(T2) + n(T1).
(5.4)

The class of (1, h, 1)-trees is the class of weighted α-trees associated with Th. Now, from
the general rule Ωq

2 we obtain the parametrized succession rule for the (1, h, 1)-trees. In this
case we have

n(φ0) = 1 n(φi1) = 1 n(φ2) = 0

s(φ0) = 0 s(φi1) = 1 s(φ2) = 0,

and t = n. Consequently, in the notation of the previous section, P (S) = 1, Q(S) = 1 and
R(S) = 1 for j = 1, 2. Moreover α0 = 1 and c = h + 1, so that we obtain the following
parametrized succession rule:
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Ωs =





(1, 0)

(1, 0)
1
; (h+ 1, 0)

((h + 1)k, s)
1
; (h+ 1, s+ 1)h((h+ 1)2, s + 2)h . . . ((h + 1)k, s+ k)h

1
; ((h+ 1)2, s+ 1)((h + 1)3, s + 2) . . . ((h+ 1)(k + 1), s+ k)

(5.5)

and the system Σ =
(
T wαGTh

, n, ϑ2,Ωs

)
is an ECO-system.

Let L be the set of nodes of the generating tree associated with Ω′
s, where

Ω′
s =





(h+ 1, 0)

((h+ 1)k, s)
1
; (h+ 1, s+ 1)h((h+ 1)2), s + 2)h . . . ((h+ 1)k, s + k)h

1
; ((h+ 1)2, s + 1)((h + 1)3, s+ 2) . . . ((h + 1)(k + 1), s+ k).

(5.6)

Given v ∈ L, we denote n(v) the level of v in the generating tree. Then the generating
function of the rule Ωs with respect to n, k and s is

fΩs(x, t, q) = 1 + xfΩ′
s
(x, t, q),

where
fΩ′

s
(x, t, q) =

∑

v∈L
xn(v)tk(v)qs(v),

with t = yh+1 (for consistency with the definition of the generating function of a succession
rule). From Ω′

s we obtain

fΩ′
s
(x, t, q) = xt+ xh

∑
v∈L x

n(v)
∑k(v)

i=1 t
iqs(v)+i + x

q

∑
v∈L x

s(v)
∑k(v)+1

i=2 tiqs(v)+i

= xt+ xhtq
1−tq

(
fΩ′

s
(x, 1, q) − fΩ′

s
(x, tq, q)

)
+ xt2q

1−tq
(
fΩ′

s
(x, 1, q) − fΩ′

s
(x, tq, q)

)

= xt+ xhtq+t
2q

1−tq fΩ′
s
(x, 1, q) − xhtq+t2q1−tq fΩ′

s
(x, tq, q).

Let

e(t) = t f(t) =
htq + t2q

1− tq g(t) = −htq + t2q

1− tq ,
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,  

φi
1 i i = 1 . . . h

φ2

Figure 5.4: The operations, φi1, φ2 of the grammar GMh
.

by applying lemma 5.0.2 we obtain

fΩ′
s
(x, 1, q) =

E1(x, 1, q)

E0(x, 1, q)
,

where

E1(x, 1, q) =
∑

n≥1

(−1)n−1 xn

(q)n−1
q

(n−1)(n+2)
2

n−2∏

k=0

(h+ qk)

and

E0(x, 1, q) =
∑

n≥0

(−1)n
xn

(q)n
q
n(n−1)

2 qn
n−1∏

k=0

(h+ qk).

5.3.2 The h-coloured Motzkin paths.

An h-coloured Motzkin path is a coloured Motkin path with h possible colours on its hor-
izontal step, with h ∈ N. Let Mh be the class of h-coloured Motzkin paths. We want to
enumerate Mh according to the area, defined as the sum of the ordinates of each endpoint
of a rise or horizontal step. The mappings φi1 and φ2, illustrated in Figure 5.4, are object
operations onMh. For i = 1 . . . h we have:

- operation φi1 adds a i-coloured horizontal step at the begining of a path;

- operation φ2 takes a pair of paths as its argument, adds a rise (resp. fall) step at the
beginning (resp. end) of the first path and then appends the second path.

The class Mh is generated by the unidimensional object grammar

GMh
=
〈
{Mh}, {{.}}, {φi1, φ2}

〉

where i = 1 . . . h and the terminal object is the path of zero length, commonly represented
as a dot. Let us denote l the length of an h-coloured Motzkin path, t its number of rise and
horizontal steps, and a its area. Then a is a natural q-parameter with respect to the operation
φ2. Indeed, given M1,M2 ∈Mh, the following relations hold:
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l(.) = 0 l(φi1(M1)) = l(M1) + 1 l(φ2(M1,M2)) = l(M1) + l(M2) + 2

a(.) = 0 a(φi1(M1)) = a(M1) a(φ2(M1,M2))) = a(M1) + a(M2) + t(M1) + 1

t(.) = 0 t(φi1(M1)) = t(M1) + 1 t(φ2(M1,M2)) = t(M1) + t(M2) + 1.

(5.7)

The class of (1, h, 1)-trees is the class of weighted α-trees associated withMh. Now, from
the general rule Ωq

2 we obtain the parametrized succession rule for the (1, h, 1)-trees. In this
case we have,

l(φ0) = 0 l(φi1) = 1 l(φ2) = 2

a(φ0) = 0 a(φi1) = 0 a(φ2) = 1,

t(φ0) = 0 t(φi1) = 1 t(φ2) = 1.

Consequently, in the notation of the previous section, we have P (S) = j, Q(S) = j − 1 and
R(S) = 1 for j = 1, 2. Moreover α0 = 1 and c = h + 1, so that we obtain the following
parametrized succession rule:

Ωa =





(1, 0)

(1, 0)
0
; (h+ 1, 0)

((h+ 1)k, a)
1
; (h+ 1, a)h((h+ 1)2), a + 1)h . . . ((h+ 1)k, a + k − 1)h

2
; ((h+ 1)2, a + 1)((h + 1)3, a + 2) . . . ((h+ 1)(k + 1), a + k)

(5.8)

and the system Σ =
(
T wαGMh

, l, ϑ2,Ωa

)
is an ECO-system.

Let L be the set of nodes of the generating tree associated with Ω′
a, where

Ω′
a =





(h+ 1, 0)

((h+ 1)k, a)
1
; (h+ 1, a)h((h+ 1)2), a + 1)h . . . ((h + 1)k, a+ k − 1)h

2
; ((h+ 1)2, a + 1)((h + 1)3, a + 2) . . . ((h+ 1)(k + 1), a+ k).

(5.9)

Given v ∈ L, we denote l(v) the level of v in the generating tree. Then the generating
function of Ωa with respect to l, k, and a is

fΩa(x, t, q) = 1 + fΩ′
a
(x, t, q),
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where
fΩ′

a
(x, t, q) =

∑

v∈L
xl(v)tk(v)qa(v),

with t = yh+1 (again for consistency with the definition). From Ω′
a we obtain

fΩ′
a
(x, t, q) = t+ xh

∑
v∈L x

l(v)
∑k(v)

i=1 t
iqa(v)+i−1 + x2

∑
v∈L x

l(v)
∑k(v)+1

i=2 tiqa(v)+i−1

= t+ xht
1−tq

(
fΩ′

a
(x, 1, q) − fΩ′

a
(x, tq, q)

)
+ x2t2q

1−tq
(
fΩ′

a
(x, 1, q) − fΩ′

a
(x, tq, q)

)

= t+ xht+xt
2q

1−tq fΩ′
a
(x, 1, q) − xht+xt2q1−tq fΩ′

a
(x, tq, q).

We can apply Lemma 5.0.2, where

e(t) =
t

x
f(t) =

ht+ xt2q

1− tq g(t) = −ht+ xt2q

1− tq
From Lemma 5.0.2 we have

fΩ′
a
(x, 1, q) =

E(x, 1, q)

1− F (x, 1, q)

Let us denote E0(x, 1, q) = E(x, 1, q) and E1(x, 1, q) = 1− F (x, 1, q), then

fΩ′
a
(x, 1, q) =

E1(x, 1, q)

E0(x, 1, q)
,

where

E1(x, 1, q) =
∑

n≥0

(−1)n
xn

(q)n
qn

n−1∏

k=0

(hqk + xq2k+1)

and

E0(x, 1, q) =
∑

n≥0

(−1)n
xn

(q)n

n−1∏

k=0

(hqk + xq2k+1).

5.3.3 The area under m-Dyck paths

A m-Dyck path is a path with steps (1,m) and (1,−1), going from (0, 0) to ((m + 1)l, 0),
and remaining weakly above the x-axis. Let Dm be the set of m-Dyck paths. We want again
to enumerate these paths according to the area, defined as the sum of the ordinates of the
endpoints of the rise steps. The mapping φm+1 is an object operation on Dm: it takes m+ 1
m-Dyck paths, adds a rise step at the beginning of the first path, and attaches at its end an
alternating sequence of down steps and paths. See Figure 5.5 for the case m = 3.

The class Dm is generated by the unidimensional object grammar

GDm = 〈{Dm}, {{.}}, {φm+1}〉

where the terminal object is the path of zero length, commonly represented as a dot. Let us
denote (m+1)l the length of an m-Dyck path, and a its area. Then a is a natural q-parameter
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,,,
φ3

Figure 5.5: The object operation φ3.

with respect to the operation φm+1. Indeed, given d1, . . . , dm+1 ∈ Dm, the following relations
hold:

l(.) = 0 l(φm+1(d1, . . . , dm+1))) = l(d1) + · · ·+ l(dm+1) + 1

a(.) = 0 a(φm+1(d1, . . . , dm+1))) = a(d1) + · · ·+ a(dm+1)+
+ml(d1) + (m− 1)l(d2) + . . .+ l(dm) + m.

(5.10)

The class of (1, 0, . . . , 0︸ ︷︷ ︸
m

, 1)-trees is the class of weighted α-trees associated with the gram-

mar GDm . Now, from the general rule Ωq
2 we obtain the parametrized succession rule for the

(1, 0, . . . , 0︸ ︷︷ ︸
m

, 1)-trees. In this case we have

l(φ0) = 0 l(φm+1) = 1

a(φ0) = 0 a(φm+1) = m,

and t = l. Consequently, in the notation of the previous section, P (S) = 1, Q(S) = m
and R(S) = 1 for j = m + 1. Moreover, α0 = 1 and c = 1, and we obtain the following
parametrized succession rule:

Ωm =





(1, 0)

(1, 0)
0
; (1, 0)

(k, a)
1
; (m+ 1, a+m)(m+ 2, a+m+ 1) . . . (m+ k, a+m+ k − 1)

(5.11)

Then the generating function of Ωm with respect to l, k, and a is

fΩm(x, y, q) = 1 + fΩ′
m

(x, y, q),

where
fΩ′

m
(x, y, q) =

∑

v∈L
xl(v)yk(v)qa(v).

From Ω′
m we obtain
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fΩ′
m

(x, y, q) = y + x
∑

v∈L x
l(v)
∑k(v)

i=1 y
iqa(v)+m+i−1

= y + xyqm

1−yq
(
fΩ′

m
(x, 1, q) − fΩ′

m
(x, yq, q)

)

= y + x yqm

1−yqfΩ′
m

(x, 1, q) − x yqm

1−yqfΩ′
m

(x, yq, q).

We can apply Lemma 5.0.2, where

e(y) =
y

x
f(y) =

yqm

1− yq g(y) = − yqm

1− yq

From Lemma 5.0.2 we have

fΩ′
m

(x, 1, q) =
E(x, 1, q)

1− F (x, 1, q)

Let us denote E0(x, 1, q) = E(x, 1, q) and E1(x, 1, q) = 1− F (x, 1, q), then

fΩ′
m

(x, 1, q) =
E1(x, 1, q)

E0(x, 1, q)
,

where

E1(x, 1, q) =
∑

n≥0

(−1)n
xn

(q)n
qmn

n−1∏

k=0

(qmk)

and

E0(x, 1, q) =
∑

n≥0

(−1)n
xn

(q)n

n−1∏

k=0

(qmk).

5.4 The area under +3− 2 paths

Let us consider the following variation Dj2,3 of the class of Dyck paths: a path in Dj2,3 is a
sequence of (1, 3) and (1,−2) steps, going from (0, 0) to (n, j) and remaining weakly above the
x-axis. The generating function of this class of paths according to the length was obtained by
Labelle and Yeh [73] and Duchon [40] using grammar decompositions. These decompositions
generalize the classic one for m-Dyck paths but they are more difficult to obtain. Here we see
that it is useful to know the ECO construction associated with an object grammar. Indeed
the ECO construction of m-Dyck paths is easily extendable and, as we will see, it allows to
find the generating function with respect to the area.

For simplicity we denote Dj the class Dj2,3. In order to give an ECO construction for

the class D0,1 = D0
⋃D1, we can extend the previous construction for m-Dyck paths: the

operator ϑm adds a peak on each point of the last descent of each Dyck path.
Let D0,1

n be the set of paths in D0,1 having lenght n, and ψ an operator from D0,1
n to

2D
0,1
n+2

S

D0,1
n+3 performing the following transformations on D ∈ D0,1

n :

If D ∈ D0
n, ψ adds the path (1, 3)(1,−2) on each point of the last descent of D. Then

the paths obtained belong to D1
n+2.
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If D ∈ D1
n, ψ adds the path (1, 3)(1,−2)(1,−2) on each point of the last descent of D.

Then the paths obtained belong to D0
n+3.

Let D ∈ D0,1
n with k points on its last descent. Let a be the area of D, defined as the sum of

the ordinates of each (1, 3) step. We can easily verify that:

if D ∈ D0
n then a(ψ(D)) = a(D) + 3 + 2(j − 1), for j ∈ {1, . . . , k},

if D ∈ D1
n then a(ψ(D)) = a(D) + 4 + 2(j − 1), for j ∈ {1, . . . , k}.

Consequently the parametrized succession rule associated to ψ is:

Ωψ =





(1, 0)

(k, a)
2
; (2, a + 3) (3, a+ 3 + 2) . . . (k + 1, a+ 3 + 2(k − 1))

(k, a)
3
; (3, a + 4)(4, a + 4 + 2) . . . (k + 2, a+ 4 + 2(k − 1))

(5.12)

Let L be the set of nodes of the generating tree associated with Ωψ. Then {L1, L2} is
a partition of L, where L1 is the subset of L with overlined labels and L2 is the remaining
subset. Let us denote l(v) the level of a node v in the generating tree. The generating function
fΩψ(x, y, q) associated with Ωψ according to l, k, and a is:

fΩψ(x, y, q) =
∑

v∈L
xl(v)yk(v)qa(v).

Then
fΩψ(x, y, q) = f1(x, y, q) + f2(x, y, q),

where
f1(x, y, q) =

∑

v∈L1

xl(v)yk(v)qa(v)

and
f2(x, y, q) =

∑

v∈L2

xl(v)yk(v)qa(v).

From Ωψ we obtain

f1(x, y, q) = y + x3 y3q4

1−yq2 f2(x, 1, q) − x3 y3q4

1−yq2 f2(x, yq
2, q),

f2(x, y, q) = x2 y2q3

1−yq2 f1(x, 1, q) − x2 y2q3

1−yq2 f1(x, yq
2, q).

In order to solve such equations we slightly extend lemma 5.0.2. The idea is the same but
we iterate both f1(x, y, q) and f2(x, y, q). Let us denote f(y) any series of the form f(x, y, q)
and
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a(y) = y b(y) = x3 y3q4

1−yq2 c(y) = −x3 y3q4

1−yq2 ,

b′(y) = x2 y2q3

1−yq2 c′(y) = −x2 y2q3

1−yq2 .

By iteration we obtain

f1(y) = E11(y)f1(1) +E12(y)f2(1) +H1(y),

f2(y) = E21(y)f1(1) +E22(y)f2(1) +H2(y),
(5.13)

where

E11(y) =
∑

n≥0

∏n−1
k=0 c(yq

4k)c′(yq4k+2)c(yq4n)b′(yq4n+2)

E12(y) =
∑

n≥0

∏n−1
k=0 c(yq

4k)c′(yq4k+2)b(yq4n)

H1(y) =
∑

n≥0

∏n−1
k=0 c(yq

4k)c′(yq4k+2)a(yq4n)

and

E21(y) =
∑

n≥0

∏n−1
k=0 c

′(yq4k)c(yq4k+2)b′(yq4n)

E22(y) =
∑

n≥0

∏n−1
k=0 c

′(yq4k)c(yq4k+2)c′(yq4n)b(yq4n+2)

H2(y) =
∑

n≥0

∏n−1
k=0 c

′(yq4k)c(yq4k+2)c′(yq4n)a(yq4n+2).

From (5.13) we finally obtain:

Proposition 5.4.1. The generating function f1(1) = f1(x, 1, q) of D0 and f2(1) = f2(x, 1, q)
of D1 are respectively

f1(1) = E12(1)H2(1)+H1(1)(1−E22(1))
(1−E11(1))(1−E22(1))−E12(1)E21(1)

f2(1) = E21(1)H1(1)+H2(1)(1−E11(1))
(1−E22(1))(1−E11(1))−E12(1)E21(1) ,

where
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E11(1) = −∑n≥0 x
5(n+1)

∏n
k=0

q20k+11

(1−q4k+2)(1−q4k+4)

E12(1) =
∑

n≥0 x
5n+3 q12n+4

1−q4n+2

∏n−1
k=0

q20k+11

(1−q4k+2)(1−q4k+4)

H1(1) =
∑

n≥0 x
5nq4n

∏n−1
k=0

q20k+11

(1−q4k+2)(1−q4k+4)

and

E21(1) =
∑

n≥0 x
5n+2 q8n+3

1−q4n+2

∏n−1
k=0

q20k+13

(1−q4k+2)(1−q4k+4)

E22(1) = −∑n≥0 x
5(n+1)

∏n
k=0

q20k+13

(1−q4k+2(1−q4k+4)

H2(1) = −∑n≥0 x
5n+2 q12n+5

1−q4n+2

∏n−1
k=0

q20k+13

(1−q4k+2)(1−q4k+4)
.
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Chapter 6

From an ECO-system to an object

grammar: convex polyominoes

In this chapter, we consider the problem of passing from an ECO-system to an object gram-
mar. Fédou and Garcia [50] already considered this problem and provided a grammar-like
decomposition for a particular class of succession rules, in order to show that their generating
functions are algebraic. The succession rules that they consider are very general but have only
one type of production. We extend here their approach to deal with a case of succession rules
with several types of production: the class of convex polyominoes. This class of polyominoes
is algebraic [34] and a direct grammar-like decomposition has been obtained before by [45].
However this decomposition contains a lot of productions and is much more difficult to obtain
directly than the ECO-system. The advantage of our method is that the grammar is obtained
in a quasi-automatic way from the ECO-system.

The general strategy that we apply is the following. Let T be the generating tree of a
succession rule Ω. To each path p of T , going from the root to a node at level n, we associate
a word w of lenght n + 1 made of the labels of the nodes of p. Then, to Ω corresponds a
noncommutative formal power series SΩ constituted of the sum over words w, with multiplic-
ities given by the number of associated paths. Then we determine a recursive decomposition
of SΩ by decomposing the words associated with Ω. More precisely, we look whether these
words contain the label of the root of T or the labels of the roots of trees that are in turn
decomposable. When the answer is positive we provide a decomposition of the words in these
terms. Finally, from SΩ, we obtain an algebraic system of equations by taking its commutative
image.

The chapter is organized as follows. We first determine an ECO construction for convex
polyominoes according to their semi-perimeter. We easily pass from the ECO construction to
the associated succession rule Ω. We then apply the decomposition and determine a system of
functional equations leading to the generating function for convex polyominoes. An account
of the result of this chapter can be found in [31].

6.1 An ECO operator for the class of convex polyominoes

The number of convex polyominoes with respect to the semi-perimeter was first determined by
Delest and Viennot [34]. In the recent years the result had been re-estabilished using different
analytical strategies (Bousquet-Mélou [13], Chang and Lin [23], Guttmann and Enting [68]),
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(b) (a)

Figure 6.1: Convex polyominoes in Cb, (b), Ca, (a).

or bijective proofs (Bousquet-Mélou and Guttmann [17]). In this section we present an ECO
approach to the enumeration of the set of convex polyominoes according to the semi-perimeter.
We first partition the set of convex polyominoes C into four classes, denoted by Cb, Ca, Cr,
and Cg:

(r) (g)

Figure 6.2: Convex polyominoes in Cr, (r), and Cg, (g).

i) Cb is the set of convex polyominoes having at least two columns and such that (Figure 6.1,
(b)):

1. The uppermost cell of the rightmost column has the maximal ordinate among all
the cells of the polyomino, and it is the same ordinate as the uppermost cell of the
column on its left.

2. The lowest cell of the rightmost column has the minimal ordinate among all the
cells of the polyomino.

ii) Ca is the set of convex polyominoes not in Cb, and such that (see Figure 6.1, (a)):

1. The uppermost cell of the rightmost column has the maximal ordinate among all
the cells of the polyomino.

2. The lowest cell of the rightmost column has the minimal ordinate among all the
cells of the polyomino.

Observe that, according to this definition, all convex polyominoes made only of one
column lie in the class Ca.
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(4)
b

(4)
b b

g
(1)(1)

r (1)
g

(1)
r

(2)
r

(2)
g

(2)
r

(3)
r

(3)
r

(5) (5)
a

Figure 6.3: The ECO operator for the class Cb.

(1) (1) (1)(4) (1)

(2) (2) (2) (3) (3)

(4) (5)

a

ab

r r

r r

r r

g g

g

Figure 6.4: The ECO operator for the class Ca.

iii) Cr is the set of convex polyominoes where only one among the lowest and the uppermost
cells of the rightmost column has minimal (resp. maximal) ordinate among all the cells
of the polyomino (see Figure 6.2, (r)).

iv) Cg is the set of remaining convex polyominoes (see Figure 6.2, (g)).

The ECO operator, namely ϑ, performs local expansions on the rightmost column of
any polyomino of semi-perimeter n + 2, producing a set of polyominoes of semi-perimeter
n+ 3. More precisely, the operator ϑ performs the following set of expansions on any convex
polyomino P , with semi-perimeter n+ 2 and k cells in the rightmost column:

- for any i = 1, . . . , k the operator ϑ glues a column of length i to the rightmost column
of P ; this can be done in k − i + 1 possible ways. Therefore this operation produces
1 + 2 + . . . + k polyominoes with semi-perimeter n+ 3.

Moreover, the operator performs some other transformations on convex polyominoes, accord-
ing to the belonging class:
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(3)

(3)

(1)

(2) (2)

(1)(1)

(4)
g r

r rgg

r r

Figure 6.5: The ECO operator for the class Cr.

- if P ∈ Cb, then the operator ϑ produces two more polyominoes, one by gluing a cell onto
the top of the rightmost column of P , and another by gluing a cell on the bottom of
the rightmost column of P (Figure 6.3).

- if P ∈ Ca, then the operator ϑ produces one polyomino by gluing a cell onto the top of the
rightmost column of P (Figure 6.4).

- if P ∈ Cr, then:

if the uppermost cell of the rightmost column of P has the maximal ordinate, the
operator ϑ glues a cell onto the top of that column ;

else, the operator ϑ glues a cell on the bottom of the rightmost column of P (Figure 6.5).

The construction for polyominoes in Cg requires no additive expansions, and it is graphically
explained in Figure 6.6.

(1) (1)(3) (1)

(2) (2) (3)

g
g g g

gg g

Figure 6.6: The ECO operator for the class Cg.

The next step consists in translating the previous construction into a set of equations
whose solution is the generating function for convex polyominoes. To realize this purpose, we
first encode the ECO operator in a succession rule.

Basically, a polyomino in Ci, i ∈ {a, b, g, r} with k cells in the rightmost column is labelled
(k)i. Let us take as an example, the polyomino in Figure 6.5, with label (3)r; according to
the figure, the performance of the ECO operator on the polyomino can be sketched by the
production:
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(3)r  (1)g (1)g (1)r (2)g (2)r (3)r (4)r.

In a similar fashion, the performance of the ECO operator on a polyomino can be sketched
by the following succession rule:

Ω





(1)a

(k)g  
∏k
j=1(j)

k−j+1
g

(k)r  
∏k−1
j=1(j)k−jg

∏k+1
j=1(j)r

(k)a  
∏k−2
j=1(j)k−j−1

g

∏k−1
j=1(j)2r (k)b (k + 1)a

(k)b  
∏k−2
j=1(j)k−j−1

g

∏k−1
j=1(j)2r (k)b (k + 1)a (k + 1)b,

(6.1)

As an example, for k = 1, 2, 3 we have the following productions of Ω:

(1)a  (1)b(2)a
(2)a  (1)r(1)r(2)b(3)a
(3)a  (1)g(1)r(1)r(2)r(2)r(3)b(4)a
. . . . . . . . .

(1)b  (1)b(2)a(2)b
(2)b  (1)r(1)r(2)b(3)a(3)b
(3)b  (1)g(1)r(1)r(2)r(2)r(3)b(4)a(4)b.
. . . . . . . . .

(1)r  (1)r(2)r
(2)r  (1)g(1)r(2)r(3)r
(3)r  (1)g(1)g(1)r(2)g(2)r(3)r(4)r
. . . . . . . . .

(1)g  (1)g
(2)g  (1)g(1)g(2)g
(3)g  (1)g(1)g(1)g(2)g(2)g(3)g
. . . . . . . . .

Remark 6.1.1. The rule Ω does not satisfy the consistency principle; we have chosen this
representation for Ω in order to have simpler notations.

Figure 6.7 depicts the first levels of the generating tree of the rule (6.1).

(1)
a

(2)
a

(1)

(1)
a

b

(1)(1)
r r

(2)
b

(3)
a b

(2) (2)
b

Figure 6.7: (a) The first levels of the generating tree of the ECO operator ϑ; (b) the first
levels of the generating tree of Ω.
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Proposition 6.1.1. Let p denote the semi-perimeter of a convex polyomino, then Σ = (C, p, ϑ,Ω)
is an ECO-system.

Proof. The operator ϑ satisfies the conditions of Proposition 1.3.1: for each polyomino
P ′ of size n+ 3 there is only one polyomino P , of size n+ 2, generating the first one through
ϑ. Let us denote R(P ′) the rightmost column of P ′. Then we have:

i) P ′ ∈ Ca: then P is obtained by removing the uppermost cell of R(P ′) and it belongs to
Ca or Cb.

ii) P ′ ∈ Cb: let i, j be respectively the number of cells of R(P ′) and the number of cells of
the column on the left of R(P ′). Then we have the following cases:

– i = j: then P is obtained by removing R(P ′) and it belongs to Ca or Cb.

– i 6= j: then P is obtained by removing the cell at the bottom of R(P ′) and it
belongs to Cb.

iii) P ′ ∈ Cr:

– the lowest (resp. uppermost) cell of R(P ′), with minimal (resp. maximal) ordinate,
has the same ordinate of the lowest (resp. uppermost) cell of the column on the
left of R(P ′): then P is obtained by removing R(P ′) and it can belong to Ca, Cb,
or Cr.

– otherwise P is obtained by removing the lowest (resp. uppermost) cell of R(P ′)
with minimal (resp. maximal) ordinate and it belongs to Cr.

iv) P ′ ∈ Cg: then P is obtained by removing R(P ′) and it belongs to Cg.

It remains to prove that there is only one P having P ′ as image. This can be easily deduced
from the construction. �

6.2 The decomposition approach

Our aim is to determine the generating function of the rule Ω by extending the approach
introduced in [50]: we treat succession rules by means of noncommutative formal power
series.

Each convex polyomino is univocally identified by a node N of the generating tree of the
rule Ω, and this node can be encoded by a word in the infinite alphabet Σ = {(i)a, (j)b, (h)g ,
(l)r : i, j, h, l ∈ N+}. Such a word is naturally defined by the sequence of labels of the nodes
starting from the root and ending at N . As an example, the polyomino depicted in Figure
6.8 is encoded by the word (1)a(1)b(2)b(3)a(3)b(4)a(5)a(3)r(2)g(2)g.

Naturally, due to the form of the productions of the rule Ω, some convex polyominoes have
the same word representation. For example the word (1)a(2)a(1)r represents two polyominoes
of size 4, as the reader can easily verify in Figure 6.7.

Formally, let LΩ be the set of words, over Σ, beginning by (1)a and satisfying the produc-
tions of Ω. Each word w of LΩ corresponds to at least one path in the generating tree of Ω.
We denote by SΩ the noncommutative formal power series:
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(1) (1) (2)

(3) (3) (4)

(5)(2) (2) (3)

b b

b
a

a a

argg

Figure 6.8: The ECO construction of a convex polyomino and the corresponding word.

SΩ =
∑

w∈LΩ

m(w)w,

where m(w) is the number of paths corresponding to w in the generating tree of Ω. The
generating function of the noncommutative formal power series SΩ is

SΩ(x) =
∑

n>0

fnx
n,

where:

fn =
∑

w∈LΩ |w|=n
m(w).

By construction we have that
SΩ(x) = xfΩ(x).

For example, we have

SΩ = (1)a + (1)a(1)b + (1)a(2)a + (1)a(1)b(1)b + (1)a(1)b(2)a + (1)a(1)b(2)b+

2 · (1)a(2)a(1)r + (1)a(2)a(2)b + (1)a(2)a(3)a + . . .

fΩ(x) = 1 + 2x+ 7x2 + 28x3 + 122x4 + . . .

We work on the series SΩ using the standard operations on noncommutative formal power
series, in particular, for any positive integer n, and (i)j ∈ Σ:

nSΩ =
∑

w∈LΩ

(nm(w))w,

(i)jSΩ =
∑

w∈LΩ

m(w)(i)jw.
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We introduce the operation ⊕: for any word u = (i1)j1(i2)j2 . . . (ik)jk of LΩ, u⊕ will denote
the word:

(i1 + 1)j1(i2 + 1)j2 . . . (ik + 1)jk .

For example ((1)a(2)a(1)r)
⊕ = (2)a(3)a(2)r . We call L⊕

Ω the set of the words u⊕, with u ∈ LΩ.
Moreover

S⊕
Ω =

∑

w∈LΩ

(m(w))w⊕.

It is clear that S⊕
Ω and SΩ have the same generating function.

Generally speaking, a noncommutative formal power series Sδ can be associated with any
succession rule δ in a completely analogous way.

Catalan succession rule. To fully understand the heart of the matter, we start presenting
an example. Let us consider the pseudo-succession rule defining Catalan numbers:

Γ





(1)

(k) (1)(2) . . . (k + 1),
(6.2)

Let C = SΓ be the noncommutative formal power series associated with the language LΓ

of the words of Γ. In practice:

C = (1) + (1)(1) + (1)(2) + (1)(1)(1) + (1)(1)(2) + (1)(2)(1) + (1)(2)(2) + (1)(2)(3) + . . .

Let us prove that:

C = (1) + (1) C + (1) C⊕ + (1) C⊕ C. (6.3)

Indeed, a word w ∈ LΓ has one of the following forms:

- |w| = 1.

- w = (1)v where :

1) v begins with (1). Then the contribution of this set of words is

∑

w

m(w)w = (1)
∑

v∈LΓ

m(v)v = (1)C.

2) v = (2)(u1) . . . (uk), with ui > 1, for i ∈ {1, . . . , k}. Then

∑

w

m(w)w = (1)
∑

v∈L⊕
Γ

m(v)v = (1)C⊕.
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3) v = (2)(u1) . . . (uk)w2, where ui > 1, for i ∈ {1, . . . , k}, and w2 begins with (1).
Then ∑

w

m(w)w = (1)
∑

v∈L⊕
Γ LΓ

m(v)v = (1)C⊕C.

Remark 6.2.1. C can be viewed as an object grammar for the class of the words of the
generating tree of Ω. Such a grammar has one terminal object, two unary operations, and one
binary operation. Therefore it is isomorphic to the grammar for parallelogram polyominoes
introduced in Subsection 4.1.2. This is not surprising since parallelogram polyominoes are
enumerated by Catalan numbers according to their semi-perimeter.

By taking the commutative image of C, we immediately derive a functional equation satisfied
by the generating function C(x) of C:

C(x) = x+ x C(x) + x C(x) + x C(x)2. (6.4)

Consequently C(x) = 1−2x−
√

1−4x
2x .

6.3 The decomposition for a partial rule: direct convex poly-

ominoes

We first present hereafter a detailed description of the calculus of the generating function for
a succession rule less complex than (6.1). Let us consider the succession rule Ω ′ with axiom
(1)r, and whose productions are the same as Ω, i.e. those defined in (6.1). In practice:

Ω′





(1)r

(k)g  
∏k
j=1(j)

k−j+1
g

(k)r  
∏k−1
j=1(j)k−jg

∏k+1
j=1(j)r.

(6.5)

The rule Ω′ encodes the ECO construction for directed convex polyominoes, obtained by
restricting the construction of Section 6.1 to the classes Cr and Cg. Then Ω′ defines central
binomial coefficients,

(2n
n

)
. Our aim, in this paragraph, is to give a proof of this fact by

computing the generating function of Ω′. This will remarkably simplify the complete calculus
of fΩ(x).

As usual, let us denote LΩ′ the set of the words produced by Ω′, and

R = SΩ′ =
∑

w∈LΩ′

m(w)w.

The main theorem is preceded by two technical lemmas.

Lemma 6.3.1. In the succession rule Ω′, the label (k2)j2 is produced by (k1)j1 if and only if
(k2 − 1)j2 is produced by (k1 − 1)j1 , with k1, k2 > 1.
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One can easily verify the above lemma by observing the productions of Ω′. �

Lemma 6.3.2. Let LP = {u = (2)r(u2)j2 . . . (uk)jk |ui > 1 , for i ∈ {2, . . . k}, and
(1)ru ∈ LΩ′}. Then LP = L⊕

Ω′.

Proof. (⇒) Let u = (2)r(u2)j2 . . . (uk)jk ∈ LP . By definition of L⊕
Ω′ , the result can be

achieved by proving that u	 = (1)r(u2 − 1)j2 . . . (uk − 1)jk ∈ LΩ′ . We proceed by induction
on the length of u	.

Base: if |u	| = 1 the result immediately follows;

Step n → n + 1: let u = (2)r(u2)j2 . . . (un)jn(un+1)jn+1 ∈ LP . By inductive hypothe-
sis, the word (1)r(u2 − 1)j2 . . . (un − 1)jn belongs to LΩ′ . By Lemma 6.3.1, the label
(un+1− 1)jn+1 is produced by the label (un− 1)jn according the productions of the rule
Ω′. Consequently u	 ∈ LΩ′ .

(⇐) The result can be achieved again by induction. �

Theorem 6.3.1. The noncommutative formal power series R can be decomposed into the
following sum:

(1)r + (1)rR+ (1)rR
⊕ + (1)rC

⊕R+ (1)rP
⊕G+ (1)rQ

⊕G, (6.6)

where

C = (1)r + (1)rC + (1)rC
⊕ + (1)rC

⊕ C

G = (1)g + (1)gG

P = (1)r + (1)rP + (1)rC
⊕P + (1)rP

⊕ + (1)rC
⊕

Q = (1)rQ+ (1)rC
⊕Q+ 2(1)rP

⊕G+ 2(1)rQ
⊕G +

(1)rQ
⊕ + (1)r(R −C)⊕.

(6.7)

Proof. In order to let the reader have a better comprehension of the role of each term
of the sum in (6.6), we depict in Figure 6.9 the first levels of the generating tree of Ω ′.

Let w be a word of LΩ′ . The general idea of the proof is to decompose the tree at the first
return to label (1). We have the following cases:

-|w| = 1, then w = (1)r.

- |w| > 1 then w = (1)rv, and we distinguish the following cases:
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R
(1) (2) (3)

(2)

(1)

(1)

r

r

r r r

g g r r

G

(1) (1) (2)g r(2) (3) (4)r

Figure 6.9: The first levels of the generating tree of Ω′.

1) v begins with (1)r. The set of words in LΩ′ having the form w = (1)rv is then equal
to (1)rLΩ′ . Consequently

∑

w=(1)rv

m(w)w = (1)rR.

For example, the word (1)r(1)r(1)r(2)r(1)r(1)r(2)r(3)r(1)r is a term of (1)rR.

2) v begins with (2)r. Four cases are possible:

a) v ∈ LP , where LP is defined in Lemma 6.3.2. Lemma 6.3.2 holds that
LP = L⊕

Ω′ . Consequently

∑

w=(1)rv, v∈LP

m(w)w = (1)r

∑

v∈LP

m(v)v = (1)rR
⊕,

For example, the word (1)r(2)r(3)r(4)r(5)r(3)g(3)g(2)g is a term of (1)rR
⊕.

b) v = (2)r(u2)r . . . (uk)r(1)rw2, with ui > 1 for i ∈ {1, . . . k}.
One can easily verify that the language of words having the form (2)r(u2)r . . . (uk)r,
ui > 1, coincides with L⊕

Γ , where LΓ is the language of Catalan words. Con-
sequently, summing over the set of such words w leads to:

∑

w

m(w)w = (1)r
∑

v∈L⊕
Γ LΩ′

m(v)v = (1)rC
⊕R.

The word (1)r(2)r(3)r(2)r(1)r(2)r(3)r(2)g(2)g(1)g is a term of (1)rC
⊕R.

c) v = (2)r(u2)r . . . (uk)rg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG
= {(1)g , (1)g(1)g, (1)g(1)g(1)g, (1)g(1)g(1)g(1)g , . . . } = (1)+g . Using the consid-
erations in step b), the sum over all the words of this type leads to

∑

w

m(w)w = (1)r
∑

v∈L⊕
Γ LG

m(v)v. (6.8)

In this case, for any word v, the value m(v) depends on uk: more precisely,
according to the productions of Ω′, if uk = j,
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m(v) = (j − 1) ·m ((2)r(u2)r . . . (j)r) ·m(g1). (6.9)

Let us denote by LΓ(i) the language of the words of LΓ ending with a label
(i)r. Using equations (6.8),(6.9) the sum over the words w of such form leads
to:

∑

w

m(w)w = (1)r

∑

j≥2


(j − 1) ·

∑

v∈LΓ
⊕

(j−1)

m(v)v



∑

v∈LG

m(v)v.

Let
C(j−1) =

∑

v∈LΓ(j−1)

m(v)v and G =
∑

v∈LG

m(v)v,

then (6.8) becomes

∑

w

m(w)w = (1)r

∑

j≥2

(j − 1)C⊕
(j−1)G = (1)rP

⊕G,

where P =
∑

j≥2(j − 1)C(j−1). The word

(1)r(2)r(3)r(4)r(2)r(3)r(1)g(1)g(1)g

is an example of a term of (1)rP
⊕G.

d) v = (2)r(u2)j2 . . . (uk)jkg1, with ui > 1, for i ∈ {2, . . . , k}, jk = g, and g1 ∈ LG.
Considerations analogous to those in step c) show that the sum over all words
w of this type leads to:

∑

w

m(w)w = (1)rQ
⊕G,

where
Q =

∑

j≥2

j R(j−1)g
and R(j−1)g

=
∑

v∈LΩ′ (j−1)g

m(v)v,

L′
Ω(j−1)g

being the set of words belonging to LΩ′ and ending with (j − 1)g.

The word (1)r(2)r(3)r(4)r(2)r(3)r(2)g(2)g(1)g(1)g is an example of a term of
(1)rQ

⊕G.

It is easy to verify that the decomposition (6.6) takes into account all the words that satisfy
the succession rule Ω′.

To conclude the proof we must verify that the noncommutative formal power series
C,G, P , and Q satisfy the system of equations (6.7). The statement is obvious for C and G.
Below, we will prove that P satisfies:

P = (1)r + (1)rP + (1)rC
⊕P + (1)rP

⊕ + (1)rC
⊕.
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We first recall that P =
∑

j≥2(j − 1)C(j−1). In view of the noncommutative equation
holding for C we deduce that:

C(i) = (1)r C(i) + (1)r C
⊕
(i−1) + (1)r C

⊕ C(i) for i > 1,

C(1) = (1)r + (1)r C(1) + (1)r C
⊕ C(1).

(6.10)

Consequently

P = C(1) +
∑

j≥3(j − 1)C(j−1)

= (1)r + (1)r C(1) + (1)r C
⊕ C(1) + (1)r

∑
j≥3(j − 1) C(j−1)+

+(1)r

∑
j≥3(j − 1) C⊕

(j−2) + (1)r

∑
j≥3(j − 1) C⊕ C(j−1).

By performing some algebraic manipulations we obtain

P = (1)r + (1)rP + (1)rC
⊕P + (1)r

∑
j≥3(j − 1) C⊕

(j−2)

= (1)r + (1)rP + (1)rC
⊕P + (1)rP

⊕ + (1)rC
⊕.

A similar proof holds for Q. Let us recall that Q =
∑

j≥2 j R(j−1)g
. From the noncommu-

tative equation holding for R we deduce that:

Rg = (1)rRg + (1)rR
⊕
g + (1)rC

⊕Rg + (1)rP
⊕G+ (1)rQ

⊕G, (6.11)

consequently

R(i)g = (1)r R(i)g + (1)r R
⊕
(i−1)g

+ (1)rC
⊕R(i)g for i > 1,

R(1)g = (1)rR(1)g + (1)r C
⊕ R(1)g + (1)rP

⊕G+ (1)rQ
⊕G.

(6.12)

Then

Q = 2 R(1)g +
∑

j≥3 j R(j−1)g

= 2(1)rR(1)g + 2(1)r C
⊕ R(1)g + 2(1)rP

⊕G+ 2(1)rQ
⊕G+

+(1)r
∑

j≥3 j R(j−1)g + (1)r
∑

j≥3 jR
⊕
(j−2)g

+ (1)rC
⊕∑

j≥3 jR(j−1)g .

By performing some algebraic manipulations we obtain that

Q = (1)r Q+ (1)r C
⊕ Q+ 2(1)rP

⊕G+ 2(1)rQ
⊕G+ (1)r

∑
j≥3 jR

⊕
(j−2)g

= (1)r Q+ (1)r C
⊕ Q+ 2(1)rP

⊕G+ 2(1)rQ
⊕G+ (1)r

∑
j≥2 jR

⊕
(j−1)g

+ (1)r

∑
j≥2 R

⊕
(j−1)g

= (1)r Q+ (1)r C
⊕ Q+ 2(1)rP

⊕G+ 2(1)rQ
⊕G+ (1)r Q

⊕ + (1)r (R − C)⊕.

�
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From Theorem 6.3.1 we immediately derive a system of functional equations,

R(x) = x+ x R(x) + x R(x) + x C(x) R(x) + x P (x) G(x)+

x Q(x) G(x)

C(x) = x+ x C(x) + x C(x) + x C2(x)

G(x) = x+ x G(x)

P (x) = x+ x P (x) + x C(x) P (x) + x P (x) + x C(x)

Q(x) = x Q(x) + x C(x) Q(x) + 2x P (x) G(x) + 2x Q(x) G(x) +

xQ(x) + x(R(x)− C(x))

(6.13)

In this system, C(x) = 1−2x−
√

1−4x
2x , G(x) = x

1−x , and all other equations are linear in these
two. Solving the system we get

R(x) =
x√

1− 4x

and the generating function of directed convex polyominoes is

fP (x) = x2fΩ′(x) = xR(x) =
x2

√
1− 4x

.

6.4 The decomposition for the complete rule Ω

Let A be the noncommutative formal power series associated with the succession rule Ω, i.e.

A = SΩ =
∑

w∈LΩ

m(w)w.

Using the same strategies as in the previous case we manage to determine a decomposition
for the series A, and then translate it into a system of equations. Let us call Ω ′′ the succession
rule having the same productions of Ω and starting with the axiom (1)b,

Ω′′





(1)b

(k)g  
∏k
j=1(j)

k−j+1
g

(k)r  
∏k−1
j=1(j)k−jg

∏k+1
j=1(j)r

(k)a  
∏k−2
j=1(j)k−j−1

g

∏k−1
j=1(j)2r (k)b (k + 1)a

(k)b  
∏k−2
j=1(j)k−j−1

g

∏k−1
j=1(j)2r (k)b (k + 1)a (k + 1)b,

(6.14)
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We denote
B =

∑

w∈LΩ′′

m(w)w.

For S a subset {a, b, r, g}, we define LΩ(i)S = ∪q∈SLΩ(i)q (resp. LΩ′′ (i)S = ∪q∈SLΩ′′ (i)q ),
where LΩ(i)q (resp. LΩ′′(i)q ) denotes the sets of words of LΩ (resp. LΩ′′) ending with (i)q , and
A(i)S (resp. B(i)S ) denotes the corresponding noncommutative formal power series. Similarly
we define LΩS = ∪q∈SLΩq (resp. LΩ′′S = ∪q∈SLΩ′′q), where LΩq (resp. LΩ′′q) denotes the sets
of words of LΩ (resp. LΩ′′) ending with color q, and AS (resp. BS) denotes the corresponding
formal power series.

Lemma 6.4.1. In the succession rules Ω and Ω′′, the label (k2)j2 is produced by (k1)j1 if and
only if (k2 − 1)j2 is produced by (k1 − 1)j1 , with k1, k2 > 1.

One can easily verify the above lemma by observing the productions of Ω and Ω ′′. �

Lemma 6.4.2. Let LQ = {u = (2)a(u2)j2 . . . (uk)jk |ui > 1 , for i ∈ {2, . . . k},
and (1)au ∈ LΩ}. Then LQ = L⊕

Ω.
Moreover, let LR = {u = (2)b(u2)j2 . . . (uk)jk |ui > 1 , for i ∈ {2, . . . k}, and

(1)bu ∈ LΩ′′}. Then LR = L⊕
Ω′′ .

Proof. The proof is identical to that of Lemma 6.3.2. �

Theorem 6.4.1. The noncommutative formal power series A can be decomposed into the
following sum:

A = (1)a + (1)a B + (1)a A
⊕ + 2(1)a A

⊕
a,b R + (1)a A

⊕
r R +

(1)a P
⊕
A G + (1)a Q

⊕
A G +

(1)a S
⊕
A G,

(6.15)

where

B = ξ(A) + (1)b B
⊕ + 2(1)b B⊕

a,b R+ (1)b B
⊕
r R +

(1)b P
⊕
BG+ (1)b Q

⊕
BG +

(1)b S
⊕
BG,

(6.16)
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Aa,b = (1)a + (1)a Ba,b + (1)a A
⊕
a,b

Ba,b = ξ(Aa,b) + (1)b B
⊕
a,b

Ar = (1)a Br + (1)a A
⊕
r + 2(1)a A

⊕
a,b C + (1)a A

⊕
r C

Br = ξ(Ar) + (1)b B
⊕
r + 2(1)b B

⊕
a,b C + (1)b B

⊕
r C,

Ag = (1)a Bg + (1)a A
⊕
g + 2(1)a A

⊕
a,b Rg + (1)a A

⊕
r Rg +

(1)a P
⊕
A G+ (1)a Q

⊕
A G+ (1)a S

⊕
A G

Bg = ξ(Ag) + (1)b B
⊕
g + 2(1)b B

⊕
a,b Rg + (1)b B

⊕
r Rg +

(1)b P
⊕
B G+ (1)b Q

⊕
B G+ (1)b S

⊕
B G,

(6.17)

PA = (1)a PB + (1)a P
⊕
A + (1)a A

⊕
a,b

PB = ξ(PA) + (1)b P
⊕
B + (1)b B

⊕
a,b

QA = (1)a QB + 2(1)a A
⊕
a,b P + (1)a A

⊕
r P + (1)a Q

⊕
A + (1)a A

⊕
r

QB = ξ(QA) + 2(1)b B
⊕
a,b P + (1)b B

⊕
r P + (1)b Q

⊕
B + (1)b B

⊕
r

SA = (1)a SB + 2(1)a A
⊕
a,b Q+ (1)a A

⊕
r Q+ 2(1)a P

⊕
A G + 2(1)a Q

⊕
A G +

2(1)a S
⊕
A G + (1)a S

⊕
A + (1)a A

⊕
g

SB = ξ(SA) + 2(1)b B
⊕
a,b Q+ (1)b B

⊕
r Q+ 2(1)b P

⊕
B G+ 2(1)b Q

⊕
B G +

2(1)b S
⊕
B G+ (1)b S

⊕
B + (1)b B

⊕
g ,

(6.18)

where R, G, P , Q, and Rg are the equations introduced for the rule Ω′, and ξ(A) is the
formal power series obtained from A by replacing, in each term, the first occurrence of (1)a
with (1)b.

Proof. We first compute the equations for A and B. In Figure 6.10 are depicted the first
levels of the generating trees of the rules Ω and Ω′′.

The equation for A Let w be a word of LΩ. Then we have the following cases:

-|w| = 1, then w = (1)a.

- |w| > 1 then w = (1)av, and we distinguish the following cases:
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B

B

(2)b (3)a (3)b

(1)b

(2)b(2)a

(2)2r (4)b

(1)a

(2)a

(2)b (3)a

(3)b

a)

(3)b (4)a(2)b (3)a

(3)b

G R R

RR

RRGRR

RR
(2)2r

(4)a

b)

Figure 6.10: The first levels of Ω (a) and Ω′′ (b).
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1) v begins with (1)b. The set of words in LΩ having the form w = (1)av is then equal
to (1)aLΩ′′ . Consequently ∑

w

m(w)w = (1)aB.

For example, the word (1)a(1)b(2)a(1)r(2)r(3)r(2)g(2)g(1)g is a term of (1)aB.

2) v begins with (2)a. Six cases are possible:

a) v ∈ LQ, LQ being defined in Lemma 6.4.2. From Lemma 6.4.2 it holds that
LQ = L⊕

Ω . Consequently

∑

w

m(w)w = (1)a
∑

v∈LQ
m(v)v = (1)a A

⊕.

The word (1)a(2)a(3)a(3)b(2)r(3)r(2)g is a term of (1)a A
⊕.

b) v = (2)a(u2)j2 . . . (uk)jk(1)rw2, with ui > 1 for i ∈ {1, . . . k} and jk ∈ {a, b}.
The set of words in LΩ having the form (1)a v, is then equal to (1)a LΩ

⊕
a,b LΩ′ .

Consequently

∑

w

m(w)w = (1)a
∑

v∈LΩ
⊕
a,b

LΩ′

m(v)v = 2(1)a A
⊕
a,bR.

The word (1)a(2)a(3)a(3)b(3)b(4)a(1)r(2)r(1)g(1)g is a term of (1)a A
⊕
a,bR.

c) v = (2)a(u2)j2 . . . (uk)r(1)rw2, with ui > 1 for i ∈ {1, . . . k}. The set of words
in LΩ having the form (1)a v, is then equal to (1)a LΩ

⊕
r . Consequently

∑

w

m(w)w = (1)a
∑

v∈LΩ
⊕
r LΩ′

m(v)v = (1)a A
⊕
r R.

The word (1)a(2)a(3)a(3)b(3)b(2)r(1)r(2)r(1)g(1)g is a term of (1)a A
⊕
r R.

d) v = (2)a(u2)j2 . . . (uk)jkg1, where ui > 1, for i ∈ {2, . . . , k}, jk ∈ {a, b} and
g1 ∈ LG = (1)+g . From the assertions of point b), we have

∑

w

m(w)w = (1)a
∑

v∈LΩ
⊕

a,b
LG

m(v)v.

The value m(v) also depends on the value uk: if uk = j+ 1 then, according to
the rule Ω,

m(v) = (j − 1) m ((2)a(u2)j2 . . . (j + 1)jk) m(g1).

Then we have:
∑

w

m(w)w = (1)a
∑

j≥2

(j − 1)
∑

v∈LΩ
⊕

(j)a,b

m(v)v
∑

v∈LG
m(v)v,

and consequently

∑

w

m(w)w = (1)a
∑

j≥2

(j − 1) A⊕
(j)a,b

G.
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By denoting PA =
∑

j≥2 (j − 1) A(j)a,b we have

∑

w

m(w)w = (1)a P
⊕
AG.

The word (1)a(2)a(3)a(3)b(4)b(1)g(1)g is a term of (1)a P
⊕
AG.

e) v = (2)a(u2)j2 . . . (uk)rg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG = (1)+g .
From the assertions of point c), we have

∑

w

m(w)w = (1)a
∑

v∈LΩ
⊕
r LG

m(v)v.

Also in this case the value m(v) depends on the value uk: if uk = j then,
according to the rule Ω,

m(v) = (j − 1) m ((2)a(u2)j2 . . . (j)r) m(g1).

Then we have:

∑

w

m(w)w = (1)a
∑

j≥2

(j − 1)
∑

v∈LΩ
⊕

(j−1)r

m(v)v
∑

v∈LG
m(v)v,

and consequently

∑

w

m(w)w = (1)a
∑

j≥2

(j − 1) A⊕
(j−1)r

G.

By denoting QA =
∑

j≥2(j − 1) A(j−1)r we have

∑

w

m(w)w = (1)a Q
⊕
AG.

The word (1)a(2)a(3)a(3)b(4)b(2)r(1)g is a term of (1)a Q
⊕
AG.

f) v = (2)a(u2)j2 . . . (uk)gg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG = (1)+g .
The set of words in LΩ having the form (1)a v, is then equal to (1)a LΩ

⊕
g LG.

Consequently

∑

w

m(w)w = (1)a
∑

v∈LΩ
⊕
g LG

m(v)v.

The value m(v) also depends on the value uk: if uk = j then, according to the
rule Ω,

m(v) = (j) m ((2)a(u2)j2 . . . (j)g) m(g1). (6.19)

Then we have:

∑

w

m(w)w = (1)a
∑

j≥2

(j)
∑

v∈LΩ
⊕

(j−1)g

m(v)v
∑

v∈LG
m(v)v,
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and consequently ∑

w

m(w)w = (1)a
∑

j≥2

j A⊕
(j−1)g

G.

By denoting SA =
∑

j≥2 j A(j−1)g we have

∑

w

m(w)w = (1)a S
⊕
AG.

The word (1)a(2)a(3)a(3)b(4)b(2)g(1)g(1)g is a term of (1)a S
⊕
AG.

The equation for B Let

LΩ
′′′ = {(1)b , (1)b (2)a v , (1)b (1)b v | (1)b (2)a v , (1)b (1)b v ∈ LΩ

′′}.

Then the words of LΩ′′′ and those of LΩ differ only for the first letter. Let ξ(A) be the formal
power series obtained from A by replacing, in each term, the first occurrence of (1)a with
(1)b. Then ξ(A) is the formal power series of the words of LΩ′′′ . Let w ∈ LΩ′′ , it remains to
study the case that w = (1)bv where v begins with (2)b (see Figure 6.10). Then six cases are
possible:

a) v ∈ LR, LR being defined in Lemma 6.4.2. From Lemma 6.4.2 it holds that LR = L⊕
Ω′′ .

Consequently ∑

w

m(w)w = (1)b
∑

v∈LR
m(v)v = (1)b B

⊕.

The word (1)b(2)b(2)b(3)b(4)a(3)r(2)g is a term of (1)b B
⊕.

b) v = (2)b(u2)j2 . . . (uk)jk(1)rw2, with ui > 1 for i ∈ {1, . . . k} and jk ∈ {a, b}. The set of
words in LΩ having the form (1)b v, is then equal to (1)b L

′′
Ω
⊕
a,b
LΩ′ . Consequently

∑

w

m(w)w = (1)b
∑

v∈LΩ′′
⊕
a,b

LΩ′

m(v)v = 2(1)b B
⊕
a,bR.

The word (1)b(2)b(3)b(4)a(3)b(1)r(2)r(1)g is a term of (1)b B
⊕
a,bR.

c) v = (2)b(u2)j2 . . . (uk)r(1)rw2, with ui > 1 for i ∈ {1, . . . k}. The set of words in LΩ′′

having the form (1)b v, is then equal to (1)b LΩ′′
⊕
r LΩ′ . Consequently

∑

w

m(w)w = (1)b
∑

v∈LΩ′′
⊕
r
LΩ′

m(v)v = (1)b B
⊕
r R.

The word (1)b(2)b(3)b(4)a(3)b(4)a(3)r(1)r(2)r(1)g is a term of (1)b B
⊕
r R.

d) v = (2)b(u2)j2 . . . (uk)jkg1, where ui > 1, for i ∈ {2, . . . , k}, jk ∈ {a, b} and g1 ∈ LG = (1)+g .
By using the same arguments as in the calculus for A we obtain

∑

w

m(w)w = (1)b
∑

j≥2

(j − 1)
∑

v∈LΩ′′
⊕

(j)a,b

m(v)v
∑

v∈LG
m(v)v,
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and consequently ∑

w

m(w)w = (1)b
∑

j≥2

(j − 1) B⊕
(j)a,b

G.

By denoting PB =
∑

j≥2 (j − 1) B(j)a,b we have

∑

w

m(w)w = (1)b P
⊕
BG.

The word (1)b(2)b(3)b(4)a(3)b(1)g(1)g is a term of (1)b P⊕
BG.

e) v = (2)b(u2)j2 . . . (uk)rg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG = (1)+g .

∑

w

m(w)w = (1)b
∑

j≥2

(j − 1)
∑

v∈LΩ′′
⊕

(j−1)r

m(v)v
∑

v∈LG
m(v)v,

and consequently ∑

w

m(w)w = (1)b
∑

j≥2

(j − 1) B⊕
(j−1)r

G.

By denoting QB =
∑

j≥2(j − 1) B(j−1)r we have

∑

w

m(w)w = (1)b Q
⊕
BG.

The word (1)b(2)b(3)b(4)a(3)b(4)a(3)r(1)g is a term of (1)b Q⊕
BG.

f) v = (2)b(u2)j2 . . . (uk)gg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG = (1)+g .

∑

w

m(w)w = (1)b
∑

j≥2

(j)
∑

v∈LΩ′′
⊕

(j−1)g

m(v)v
∑

v∈LG
m(v)v,

and consequently ∑

w

m(w)w = (1)b
∑

j≥2

j B⊕
(j−1)g

G.

By denoting SB =
∑

j≥2 j B(j−1)g we have

∑

w

m(w)w = (1)b S
⊕
BG.

The word (1)b(2)b(3)b(4)a(3)b(4)a(3)r(2)g(1)g(1)g is a term of (1)b S⊕
BG.

To conclude the proof we must verify that the remaining formal power series satisfy the
equations of the systems (6.17) and (6.18). The equations of system (6.17) can be easily
deduced from the equations for A and B. For instance the equation for Aa,b is obtained from
the equation for A, by observing that the terms ending with R and G do not contribute to
Aa,b.

Now we compute the equations for PA, QA, and SA. We omit the calculus of PB , QB ,
and SB since the procedure is exactly the same. Let us recall that PA =

∑
j≥2 (j− 1) A(j)a,b .

From the equation for Aa,b we have

A(i)a,b = (1)a B(i)a,b + (1)a A
⊕
(i−1)a,b

for i > 1.
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Then by substituting A(j)a,b we obtain

PA = (1)a
∑

j≥2 (j − 1) B(j)a,b + (1)a
∑

j≥2 (j − 1)A⊕
(j−1)a,b

= (1)a PB + (1)a A
⊕
(1)a,b

+ (1)a
∑

j≥3 (j − 1)A⊕
(j−1)a,b

= (1)a PB + (1)a A
⊕
a,b + (1)a P

⊕
A .

Now, we compute QA =
∑

j≥2(j − 1) A(j−1)r . From the equation for Ar we have

A(i)r = (1)a B(i)r + (1)a A
⊕
(i−1)r

+ 2(1)a A
⊕
a,b C(i) + (1)a A

⊕
r C(i) if i > 1,

A(1)r = (1)a B(1)r + +2(1)a A
⊕
a,b C(1) + (1)a A

⊕
r C(1).

(6.20)

By substituting A(j−1)r in QA we have

QA = A(1)r + (1)a
∑

j≥3(j − 1) B(j−1)r + (1)a
∑

j≥3(j − 1)A⊕
(j−2)r

+

+2(1)a A
⊕
a,b

∑
j≥3(j − 1) C(j−1) + (1)a A

⊕
r

∑
j≥3(j − 1) C(j−1).

Then, by substituting A(1)r we have

QA = (1)a QB + 2(1)a A
⊕
a,b P + (1)a A

⊕
r P + (1)a

∑
j≥3(j − 1)A⊕

(j−2)r

= (1)a QB + +2(1)a A
⊕
a,b P + (1)a A

⊕
r P + (1)aQ

⊕
A + (1)a A

⊕
r

Finally we determine SA. From the equation for Ag we have

A(i)g = (1)a B(i)g + (1)a A
⊕
(i−1)g

+ 2(1)a A
⊕
a,b R(i)g + (1)a A

⊕
r R(i)g if i > 1,

A(1)g = (1)a B(1)g + 2(1)a A
⊕
a,b R(1)g + (1)a A

⊕
r R(1)g + (1)a P

⊕
A G +

(1)a Q
⊕
A G+ (1)a S

⊕
A G.

(6.21)

We recall that SA =
∑

j≥2 j A(j−1)g . Then, by substituting A(j−1)g we obtain

SA = 2A(1)g + (1)a
∑

j≥3 j B(j−1)g + (1)a
∑

j≥3 jA
⊕
(j−2)g

+

2(1)a A
⊕
a,b

∑
j≥3 j R(j−1)g + (1)a A

⊕
r

∑
j≥3 j R(j−1)g .
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Then, by substituting A(1)g we have

SA = (1)a SB + (1)a
∑

j≥3 jA
⊕
(j−2)g

+ 2(1)a A
⊕
a,b Q+ (1)a A

⊕
r Q+

+2(1)a P
⊕
A G + 2(1)a Q

⊕
A G+ 2(1)a S

⊕
A G.

= (1)a SB + 2(1)a A
⊕
a,b Q+ (1)a A

⊕
r Q+ 2(1)a P

⊕
A G+

+2(1)a Q
⊕
A G+ 2(1)a S

⊕
A G+ (1)a S

⊕
A + (1)a A

⊕
g .

�

Finally, by taking the commutative image of the equations of the system obtained in
Theorem 6.4.1, we have a system of functional equations and we can compute the generating
function A(x) of A. The system that we obtain is the following where R(x), C(x), P (x), Q(x),
and G(x) are already known from Subsection 6.3.

A(x) = x + x B(x) + x A(x) + 2x Aa,b(x) R(x) + x Ar(x) R(x) +

x PA(x) G(x) + x QA(x) G(x) +

x SA(x) G(x),

(6.22)

where

B(x) = A(x) + x B(x) + 2x Ba,b(x) R(x) + x Br(x) R(x) +

x PB(x)G(x) + x QB(x)G(x) +

x SB(x)G(x),

(6.23)

Aa,b(x) = x+ x Ba,b(x) + x Aa,b(x)

Ba,b(x) = Aa,b(x) + x Ba,b(x)

Ar(x) = x Br(x) + x Ar(x) + 2x Aa,b(x) C(x) + x Ar(x) C(x)

Br(x) = Ar(x) + x Br(x) + 2x Ba,b(x) C(x) + x Br(x) C(x),

Ag(x) = x Bg(x) + x Ag(x) + 2x Aa,b(x) Rg(x) + x Ar(x) Rg(x) +

x PA(x) G(x) + x QA(x) G(x) + x SA(x) G(x)

Bg(x) = Ag(x) + x Bg(x) + 2x Ba,b(x) Rg(x) + x Br(x) Rg(x) +

x PB(x) G(x) + x QB(x) G(x) + x SB(x) G(x)

Rg(x) = xRg(x) + xRg(x) + xC(x)Rg(x) + xP (x)G(x) + xQ(x)G(x),

(6.24)
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PA(x) = x PB(x) + x PA(x) + x Aa,b(x)

PB(x) = PA(x) + x PB(x) + x Ba,b(x)

QA(x) = x QB(x) + 2x Aa,b(x) P (x) + x Ar(x) P (x) + x QA(x) + x Ar(x)

QB(x) = QA(x) + 2x Ba,b(x) P (x) + x Br(x) P (x) + x QB(x) + x Br(x)

SA(x) = x SB(x) + 2x Aa,b(x) Q(x) + x Ar(x) Q(x) + 2x PA(x) G(x) + 2x QA(x) G(x) +

2x SA(x) G(x) + x SA(x) + x Ag(x)

SB(x) = SA(x) + 2x Ba,b(x) Q(x) + x Br(x) Q(x) + 2x PB(x) G(x) + 2x QB(x) G(x) +

2x SB(x) G(x) + x SB(x) + x Bg(x).

(6.25)

In this system, the series C(x), R(x), P (x), Q(x), and G(x) are known from the previous
calculations and the equations for Aa,b(x), Ba,b(x), Ar(x), and Br(x) are linear. Once these
series have been obtained, all other equations are linear. Solving the system we get

A(x) =
∑

n≥0

fnx
n =

1− 6x+ 11x2 − 4x3 − 4x2
√

1− 4x

(1− 4x)2
, (6.26)

then we determine the generating function for convex polyominoes,

C(x) = x2fΩ(x) = xA(x).
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hiérarchies aléatoires. Theoretical Computer Science, 255:345–361, 2001.

[78] E. Pergola. ECO: a Methodology for Enumerating Combinatorial Objects. PhD thesis,
University of Florence, 1999.

[79] E. Pergola and R. Pinzani. A combinatorial interpretation of the area of Schröder paths.
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