carlotta giannelli
::: home
::: about
::: papers
::: meetings

special issue

research articles (dblp, MathSciNet)

  1. C. Bracco, C. Giannelli, A. Sestini (2017)
    Adaptive scattered data fitting by extension of local approximations to hierarchical splines
    Computer Aided Geometric Design, in press.

  2. R. T. Farouki, C. Giannelli, D. Mugnaini, A. Sestini (2017)
    Path planning with Pythagorean-hodograph curves for unmanned or autonomous vehicles
    Journal of Aerospace Engineering, in press.

  3. T. Kanduc, C. Giannelli, F. Pelosi, H. Speleers (2017)
    Adaptive isogeometric analysis with hierarchical box splines
    Computer Methods in Applied Mechanics and Engineering, 316, 817-838.

  4. R. T. Farouki, G. Gentili, C. Giannelli, A. Sestini, C. Stoppato (2017)
    A comprehensive characterization of the set of polynomial curves with rational rotation-minimizing frames
    Advances in Computational Mathematics, 43, 1-24.

  5. F. Pelosi, C. Giannelli, C. Manni, M. L. Sampoli, H. Speleers (2017)
    Splines over regular triangulations in numerical simulations
    Computer Aided Design, 82, 100-111.

  6. A. Buffa, C. Giannelli, P. Morgenstern, D. Peterseim (2016)
    Complexity of hierarchical refinements for strictly admissible meshes
    Computer Aided Geometric Design, 47, 83-92.

  7. A. Buffa, E. M. Garau, C. Giannelli, G. Sangalli (2016)
    On quasi-interpolation operators in spline spaces
    Lecture Notes in Computational Science and Engineering, Vol. 114, pp. 73-91.

  8. C. Giannelli, D. Mugnaini, A. Sestini (2016)
    Path planning with obstacle avoidance by G^1 PH quintic splines
    Computer-Aided Design, 75-76, 47-60

  9. C. Bracco, C. Giannelli, F. Mazzia, A. Sestini (2016)
    Hierarchical Hermite spline quasi-interpolation
    BIT Numerical Mathematics, 56, 1165-1188

  10. C. Giannelli, B. Juttler, S. K. Kleiss, A. Mantzaflaris, B. Simeon, J. Å peh (2016)
    THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis
    Computer Methods in Applied Mechanics and Engineering, 299, 337-365

  11. A. Buffa, C. Giannelli (2016)
    Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence
    Mathematical Models and Methods in Applied Sciences, 26, 1-25

  12. R. T. Farouki, G. Gentili, C. Giannelli, A. Sestini, C. Stoppato (2016)
    Solution of a quadratic quaternion equation with mixed coefficients
    Journal of Symbolic Computation, 74, 140-151.

  13. R. T. Farouki, C. Giannelli, A. Sestini (2016)
    Local modification of Pythagorean-hodograph quintic spline curves using the B-spline form
    Advances in Computational Mathematics, 42, 199-225

  14. R. T. Farouki, C. Giannelli, and A. Sestini (2015)
    Identification and "reverse engineering" of Pythagorean-hodograph curves
    Computer Aided Geometric Design, 34, 21-36.

  15. G. Kiss, C. Giannelli, U. Zore, B. Jüttler, D. Großmann, and J. Barner (2014)
    Adaptive CAD model (re-)construction with THB-splines
    Graphical Models, 76, 273-288.

  16. D. Mokriš, B. Jüttler, C.Giannelli (2014)
    On the completeness of hierarchical tensor-product B-splines
    Journal of Computational and Applied Mathematics, 271, 53-70.

  17. R. T. Farouki, C. Giannelli, M. L. Sampoli, and A. Sestini (2014)
    Rotation-minimizing osculating frames
    Computer Aided Geometric Design, 31, 27-42.

  18. C. Giannelli, B. Jüttler and H. Speleers (2014),
    Strongly stable bases for adaptively refined multilevel spline spaces,
    Advances in Computational Mathematics, 40, 459-490.

  19. G. Kiss, C. Giannelli, and B. Jüttler (2014)
    Algorithms and data structures for truncated hierarchical B-splines
    (M. Floater et al., eds.) Lecture Notes in Computer Science, Vol. 8177, pp. 304–323.

  20. C. Giannelli, B. Jüttler (2013)
    Local and adaptive refinement with hierarchical B-splines
    Bollettino della Unione Matematica Italiana, 6, 735-740.

  21. C. Giannelli and B. Jüttler (2013)
    Bases and dimensions of bivariate hierarchical tensor-product splines
    Journal of Computational and Applied Mathematics, 239, 162-178.

  22. R. T. Farouki, C. Giannelli, and A. Sestini (2013)
    An interpolation scheme for designing rational rotation-minimizing camera motion
    Advances in Computational Mathematics, 38, 63–82.

  23. C. Giannelli, B. Jüttler and H. Speleers (2012)
    THB-splines: the truncated basis for hierarchical splines
    Computer Aided Geometric Design, 29, 485–498.

  24. R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini (2012)
    Design of rational rotation–minimizing rigid body motions by Hermite interpolation
    Mathematics of Computation, 81, 879-903.

  25. A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon (2011)
    A hierarchical approach to adaptive local refinement in isogeometric analysis
    Computer Methods in Applied Mechanics and Engineering, 200, 3554-3567.

  26. C. Giannelli and L. Biard (2011)
    On the interpolation of concentric curvature elements
    Computer Aided Design 43, 586–597.

  27. R. T. Farouki, C. Giannelli, and A. Sestini (2010)
    Geometric design using space curves with rational rotation–minimizing frames
    (M. Daehlen et al., eds.) Lecture Notes in Computer Science, Vol. 5862, pp. 194-208.

  28. R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini (2009)
    Quintic space curves with rational rotation–minimizing frames
    Computer Aided Geometric Design 26, 580–592.

  29. R. T. Farouki and C. Giannelli (2009)
    Spatial camera orientation control by rotation–minimizing directed frames
    Computer Animation and Virtual Worlds 20, 457–472.

  30. R. T. Farouki, C. Giannelli, and A. Sestini (2009)
    Helical polynomial curves and double Pythagorean hodographs II. Enumeration of low-degree curves
    Journal of Symbolic Computation 44, 307–332.

  31. R. T. Farouki, C. Giannelli, and A. Sestini (2009)
    Helical polynomial curves and double Pythagorean hodographs I. Quaternion and Hopf map representations
    Journal of Symbolic Computation 44, 161–179.

  32. R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini (2008)
    Identification of spatial PH quintic Hermite interpolants with near–optimal shape measures
    Computer Aided Geometric Design 25, 274–297.

:: cg :: february 21, 2017 ::